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Abstract

In this short note we give a generalization of an identity for Lambert series
by Wrench.

1 Wrench’s identity

The following relation is given by Knuth (attributed to J. R. Wrench, Jr.) [3]
p.644, solution to exercise 5.2.3-27]:
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To verify this identity, write the Lambert sum as
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and write the summands in a table (cf. [4]) as shown in figure [l Then take
sums starting from the diagonal2entries an q”g, taking both the terms to the
right in the same row Y, <, an ¢" +kn and the terms below in the same column
Zj>1 Qpyj q"2+j". To obtain 7 combine into a single sum, replacing j by k
in the column sums.
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Figure 1: The double sum in relation written as a table.

2 The generalization
We first derive
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As before, write as a double sum
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Take sums starting from the diagonal entries a, b~!q "* the terms to the

right give >, 5, a, brtk—1 g"" k™ the terms below give D j>1Anj 7,_7_] gnrin,
Write as a single sum to obtain .
Replacing a,, by a, t"/q"™ and simplifying gives the desired identity:
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For the special case a,, = 1/t and b, = /g there is Agarwal’s relation, see [2]
(note the summation starts with n = 0),
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and also, see [I],
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where (2;¢), = (1—2) (1—2¢) (1—2¢%) --- (1—2¢"" ') and (2;¢)o = 1. Writing
identity in a similar way doesn’t seem easily possible.
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