Generalization of Wrench's identity for Lambert series

Jörg Arndt
Technische Hochschule Nürnberg

arndt@jjj.de
April 6, 2014, re-TeXed April 14, 2019

Abstract

In this short note we give a generalization of an identity for Lambert series by Wrench.

1 Wrench's identity

The following relation is given by Knuth (attributed to J. R. Wrench, Jr.) [3, p.644, solution to exercise 5.2.3-27]:

$$
\begin{equation*}
W(q):=\sum_{n \geq 1} \frac{a_{n} q^{n}}{1-q^{n}}=\sum_{n \geq 1} q^{n^{2}}\left[a_{n}+\sum_{k \geq 1}\left(a_{n}+a_{n+k}\right) q^{k n}\right] \tag{1}
\end{equation*}
$$

To verify this identity, write the Lambert sum as

$$
\begin{equation*}
W(q)=\sum_{n \geq 1} \sum_{k \geq 1} a_{n} q^{k n} \tag{2}
\end{equation*}
$$

and write the summands in a table (cf. [4]) as shown in figure 1. Then take sums starting from the diagonal entries $a_{n} q^{n^{2}}$, taking both the terms to the right in the same row $\sum_{k \geq 1} a_{n} q^{n^{2}+k n}$, and the terms below in the same column $\sum_{j \geq 1} a_{n+j} q^{n^{2}+j n}$. To obtain (1), combine both into a single sum, replacing j by k in the column sums.

	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	\cdots	k	\cdots
$n=1$	$a_{1} q^{1}$	$a_{1} q^{2}$	$a_{1} q^{3}$	$a_{1} q^{4}$	$a_{1} q^{5}$	\cdots	$a_{1} q^{k}$	\cdots
$n=2$	$a_{2} q^{2}$	$a_{2} q^{4}$	$a_{2} q^{6}$	$a_{2} q^{8}$	$a_{2} q^{10}$	\ldots	$a_{2} q^{2 k}$	\ldots
$n=3$	$a_{3} q^{3}$	$a_{3} q^{6}$	$a_{3} q^{9}$	$a_{3} q^{12}$	$a_{3} q^{15}$	\ldots	$a_{3} q^{3 k}$	\ldots
$n=4$	$a_{4} q^{4}$	$a_{4} q^{8}$	$a_{4} q^{12}$	$a_{4} q^{16}$	$a_{4} q^{20}$	\ldots	$a_{4} q^{4 k}$	\ldots
$n=5$	$a_{5} q^{5}$	$a_{5} q^{10}$	$a_{5} q^{15}$	$a_{5} q^{20}$	$a_{5} q^{25}$	\ldots	$a_{5} q^{5 k}$	\ldots
	\vdots	\ldots						
n	$a_{n} q^{n}$	$a_{n} q^{2 n}$	$a_{n} q^{3 n}$	$a_{n} q^{4 n}$	$a_{n} q^{5 n}$	\ldots	$a_{n} q^{n k}$	\ldots
	\vdots	\ldots						

Figure 1: The double sum in relation (2) written as a table.

2 The generalization

We first derive

$$
\begin{equation*}
\sum_{n \geq 1} \frac{a_{n} q^{n}}{1-b_{n} q^{n}}=\sum_{n \geq 1} q^{n^{2}}\left[a_{n} b_{n}^{n-1}+\sum_{k \geq 1}\left(a_{n} b_{n}^{n+k-1}+a_{n+k} b_{n+k}^{n-1}\right) q^{n k}\right] \tag{3}
\end{equation*}
$$

As before, write as a double sum

$$
\begin{equation*}
\sum_{n \geq 1} \sum_{k \geq 1} a_{n} b_{n}^{k-1} q^{k n} \tag{4}
\end{equation*}
$$

Take sums starting from the diagonal entries $a_{n} b_{n}^{n-1} q^{n^{2}}$. The terms to the right give $\sum_{k \geq 1} a_{n} b_{n}^{n+k-1} q^{n^{2}+k n}$, the terms below give $\sum_{j \geq 1} a_{n+j} b_{n+j}^{n-1} q^{n^{2}+j n}$. Write as a single sum to obtain (3).
Replacing a_{n} by $a_{n} t^{n} / q^{n}$ and simplifying gives the desired identity:

$$
\begin{align*}
& \sum_{n \geq 1} \frac{a_{n} t^{n}}{1-b_{n} q^{n}}= \\
= & \sum_{n \geq 1} q^{n(n-1)} t^{n}\left[a_{n} b_{n}^{n-1}+\sum_{k \geq 1}\left(a_{n} b_{n}^{n+k-1} q^{k}+a_{n+k} b_{n+k}^{n-1} t^{k}\right) q^{k(n-1)}\right] \tag{5}
\end{align*}
$$

For the special case $a_{n}=1 / t$ and $b_{n}=x / q$ there is Agarwal's relation, see [1] (note the summation starts with $n=0$),

$$
\begin{equation*}
\sum_{n \geq 0} \frac{t^{n}}{1-x q^{n}}=\sum_{n \geq 0} \frac{\left(1-x t q^{2 n}\right)}{\left(1-x q^{n}\right)\left(1-t q^{n}\right)}(x t)^{n} q^{n^{2}} \tag{6}
\end{equation*}
$$

and also, see [2],

$$
\begin{equation*}
\sum_{n \geq 0} \frac{t^{n}}{1-x q^{n}}=\sum_{n \geq 0} \frac{(q ; q)_{n}}{(x ; q)_{n+1}(t ; q)_{n+1}}(x t)^{n} q^{\left(n^{2}-n\right) / 2} \tag{7}
\end{equation*}
$$

where $(z ; q)_{n}=(1-z)(1-z q)\left(1-z q^{2}\right) \cdots\left(1-z q^{n-1}\right)$ and $(z ; q)_{0}=1$. Writing identity (5) in a similar way doesn't seem easily possible.

References

[1] R. P. Agarwal: Lambert series and Ramanujan, Proceedings of the Indian Academy of Science (Mathematical Sciences), vol.103, no.3, pp.269-293, (December-1993). 2
[2] Jörg Arndt: On computing the generalized Lambert series, arXiv:1202.6525 [math.CA] (2012). 2
[3] Donald E. Knuth: The Art of Computer Programming, second edition, Volume 3: Sorting and Searching, Addison-Wesley, (1997). 1
[4] Thomas J. Osler, Abdul Hassen: On generalizations of Lambert's series, International Journal of Pure and Applied Mathematics, vol.43, no.4, pp.465484, (2008). 1

