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Abstract

We describe families of plane-filling curves on any edge-to-edge tiling of the plane
with regular polygons and finitely many classes of edges. It is shown how to
partition the minimal number of edge classes from the group G of symmetries of
the tiling into refined colorings of the tiling, corresponding to finite subgroups of
G. All of these colorings correspond to families of plane-filling curves which we
call curve-sets. Our exposition is driven by illustrated examples.
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1 Terminology and definitions

We fix some terminology.

1.1 k-uniform grids and their edge classes
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Figure 1.1.0-A: Tessellations of the plane with their vertex configurations, from left
to right: square tiling (4%), triangle tiling (3°), trihexagonal tiling (3.6.3.6), and the
tiling (3.4.6.4).
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An edge-to-edge tiling (also called tessellation or grid) by regular polygons is commonly
defined by specifying the classes of points (vertices). Four grids with just one class of
points are shown in Figure 1.1.0-A, the respective symbols (4%), (3%), (3.6.3.6), and
(3.4.6.4) specify the numbers of edges of the polygons adjacent to each point. Among
the possible cyclic rotations the lexicographic minimum is chosen.

A grid with two point classes is shown in Figure 1.1.0-B. The symmetries of the grid
usually allowed are translations, rotations, and reflections. A tiling with &k classes of

points is called k-uniform, see [11, Section 2.2, pp. 65ff].
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Figure 1.1.0-B: The (3.4.4.6;3.4.6.4)-grid (left) and its CCW (middle) and CW (right)
prototiles.
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For our purposes, we are rather interested in the edge classes. Moreover, we disallow
reflections and use directed edges. We use one color and the equivalent letter for each
edge class in the grid drawing.

We use the term grid also to refer to the directed grids from here on.

A grid can be defined using the transitions between successive edges. The transitions
are triples (F,t,G) with (edge-)letters F' and G and turn ¢ have the property that
the pair (F,t) uniquely defines G. We call this the unique transition property. In
other words, the first two entries in a transition determine the third. It is also true
that the last two entries determine the first. In our (3.4.4.6;3.4.6.4)-grid shown in
Figure 1.1.0-B the transitions can be given as

A++A, B++++C, C++++D, D++++B, E+++F, F+++E

edge class

grid

transitions

unique transition prop-
erty



1.2 Edge-covering curves and their tiles

A---B, B---F, C--E, D---A, E--C, F---D

where a word of j letters + or - respectively is a counterclockwise or clockwise turn by
j2m/12 = j- 30 degrees. We will use the abbreviations CW and CCW respectively
for clockwise and counterclockwise sense of rotation from this point on.

Another way of defining a grid is by specifying the prototiles. The prototiles of the
(3.4.4.6;3.4.6.4)-grid are shown on the right in Figure 1.1.0-B. We denote the CCW
tiles of this grid by [A++]6, [B++++C++++D++++]1 and [E+++F+++)2 and the CW tiles by
[A---B---F---D---]! and [C--E--]3. The exponent at the right indicates a repetition,
for example, [E+++F+++]2 could also be written as [E+++F+++E+++F+++]. Note that a
prototile can appear in more then one orientation. For example, note how the prototile
[A---B---F---D---]! (top right in Figure 1.1.0-B) appears in six orientations around
the blue hexagons.

A lattice tile is a tile that tiles the plane in such a way that it appears in just one
orientation. For brevity we sometimes just say tile instead of prototile, (whether or
not it is a lattice tile). This will never lead to confusion, if a prototile in a grid coloring
is a lattice tile, we say so.
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Figure 1.1.0-C: Directed grids, from left to right: square grid (4%), triangle grid (3°),

trihexagonal grid (3.6.3.6), and the (3.4.6.4)-grid.

If there is just one CW (or CCW) tile and it appears in just one orientation, then it
is a lattice tile: it can be decomposed into smaller copies of itself, each of the same
orientation; repeating this process shows that it is indeed a lattice tile. This happens
for both tiles of the square (4*) grid and the triangle (3%) grid, and for the hexagonal
tile of the trihexagonal grid (3.6.3.6), see Figure 1.1.0-C. The triangular tile of the
trihexagonal grid appears in two orientations, therefore is not a lattice tile.

We'll give examples where certain arrangements of several prototiles give a lattice tile.

1.2 Edge-covering curves and their tiles

For the description of curves on a grid we use Lindenmayer systems as described in
[2, Section 1.2, pp. 3ff]. A Lindenmayer system (or L-system) is a triple (2, A, P)
where 2 is an alphabet, A a word over Q (called the aziom), and P a set of maps
from letters € 2 to words over () that contains one map for each letter.

The word that a letter is mapped to is called the production of the letter. We also use
the term map for this. If the production of a letter is just the letter itself, we call the
letter a constant.

We specify curves by L-systems interpreted as a sequence of unit-length edges and
turns. The curves can be rendered via turtle graphics, see [17, Section 1.3, pp. 6ff].
The initial direction is arbitrary. Letters are interpreted as “draw a unit stroke in the
current direction”, + and - as turns by + a fixed angle ¢ = 27” where n € N;. We
will also use the letter 0 for turns by 0° (non-turns).

Applying the maps of the L-system j times to the axiom gives a word that is the jth
iterate. We call the drawing corresponding to this word the jth iterate of the curve.

CW sense of rotation
CCW sense of rotation

prototile

lattice tile
tile

Lindenmayer system

axiom

production
map
constant

iterate



1.2 Edge-covering curves and their tiles

The first, second, and fourth iterates for the axiom F (corresponding to a single edge)
with production F — FOF+FOFOF-F+F-F-FOF+F+F-F are given in Figure 1.2.0-A. The
first iterate is also called the motif, the motif for a letter F' corresponds to the drawing
of the production of F'. The letters + and - respectively denote turns by +120 degrees,
and 0 for a (non-)turn by 0 degrees. The curve is drawn with rounded corners to make
the sequence of strokes apparent.
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Figure 1.2.0-A: First iterate (left), second iterate (middle), and fourth iterate (right)
of a curve corresponding to the word FOF+FOFOF-F+F-F-FOF+F+F-F. This curve lives
on the triangle grid. Coloring by edges of the motif.

4

Some sources, for example [14] and [15], call the axiom the initiator and use the term
generator for the (single) map of a Lindenmayer system with only one non-constant
symbol.

The colors used in Figure 1.2.0-A do not correspond to edge classes; the curve lives on
the triangle grid where there is just one class. Instead, each stroke of the motif has its
own (arbitrary) color and the parts of the higher iterates of the curve inherit the color
of the edge it developed from. This makes the self-similarity of the curve obvious,
each colored part in the drawing on the right has the same shape, and magnifying
those shapes gives the shape of the entire drawing.

All of our curves will be self-avoiding in the sense that both self-crossings and doubly
drawn edges are forbidden.

We call a (self-avoiding) curve edge-covering if a large enough iterate traverses all
edges in an arbitrarily large disc on the grid. Such a curve is also plane-filling. There
are plane-filling curves of other types as well, for example, curves that traverse all
points in such a disc, well-known examples being the Hilbert curve and the Peano
curve.

Figure 1.2.0-B shows a rendering of the curve already seen in Figure 1.2.0-A where

each edge is drawn as a lozenge stretching to the midpoint of the neighboring triangles.

We call this an area drawing (for the lack of a better term). Area drawings are useful
for emphasizing the shape of a curve and we will use it for many images without saying
so. Indeed, the fourth iterate on the right in Figure 1.2.0-A is an area drawing. The
idea for drawing curves this way appeared in [7, Addendum, pp.603-605].

The number of edges incident to a point (in either direction) will be called the wvalency
of the point. It appears that each point needs to have an even valency, because for
every stroke to the point, a stroke away from the point is needed. We will, however,
solve this apparent problem in Section 3 on page 63.

motif

self-similarity

self-avoiding

edge-covering

plane-filling

area drawing

valency



1.3 Curves on grids with more than one edge class: curve-sets
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Figure 1.2.0-B: First (left), second (middle), and third (right) iterate of a curve,
rendered as area drawings.

1.3 Curves on grids with more than one edge class: curve-sets

Edge-covering curves on grids with just one edge class have been treated in [2]. For
grids with j7 > 1 edge classes we have j curves working together to fill the plane, we
call this a curve-set.
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Figure 1.3.0-A: The minimal coloring of the (3.4.6.4)-grid (left). Its CCW prototiles
[A++]% and [B++++]3 (middle), and the CW prototile [A---B---]? (right).

Our first example of a curve-set lives on the (3.4.6.4)-grid with j = 2 edge classes,
shown in Figure 1.3.0-A. The classes are denoted by the letters A (edges surrounding
hexagons, drawn in blue) and B (edges surrounding triangles, drawn in red). The three
prototiles are given by the words [A++]® = A++A++A++A++A++A++ (hexagon), [B++++]?
= B++++B++++B++++ (triangle), and [A---B---]? = A---B---A---B--- (square). The
turns corresponding to + and - are by +30 degrees (27/12). The transitions of the
grid are A++A, B++++B, A-—-B, and B---A, as can be read from the prototiles.

The two curves of the curve-set have the maps

A |--> A++A++A++A-—-B-——A-—-B++++B++++B-——A++A++A++A-—— \
B---A---B++++B-——A-—-B++++B-——-A-—-B++++B++++B-—-A
B |--> B---A++A++A-—-B++++B++++B-—-A---B-—--A++A-—-B++++B

The first iterate of both curves are shown in Figure 1.3.0-B.

The curves of a curve-set exhibit mutual self-similarity as shown in Figure 1.3.0-C:

curve-set

mutual self-similarity



1.3 Curves on grids with more than one edge class: curve-sets

both curves are decomposed into smaller copies of each other. The decomposition into
colors is done similarly as in Figure 1.2.0-A on page 5.

Figure 1.3.0-B: First iterates (motifs) of a curve-set on the (3.4.6.4)-grid. Motif for A
(left) and for B (right).

i
Figure 1.3.0-C: Fourth iterates of the curve-set, for A (left) and B (right). Coloring by
orientation of the curves.

The substitution matriz of a curve-set is the matrix whose entry r, ¢ is the number of  substitution matriz
letters r in the production of class ¢. For this curve-set the matrix is

13 6

12 7
It tells us that curve A (left in Figure 1.3.0-C) is decomposed into 13 smaller copies of
curve A (itself) and 12 smaller copies of curve B (left column of the matrix). Curve B

(right in Figure 1.3.0-C) is decomposed into 6 copies of curve A and 7 copies of curve
B (itself). This can be seen in Figure 1.3.0-B as well.

We observe that all row sums R of the matrix are equal (R = 19). This allows us to
define the order of a curve-set to be R. The definition of the order in [2, bottom of order
p.4] is a special case of this definition.

1.3.1 All edge classes in a patch have the same cardinality

We show that the row sums of the substitution matrix are indeed always identical,
hence our concept of order is well-defined.

Consider a parallelogram (minimal or not) satisfying the translational symmetries of
the grid. We call such a parallelogram composed of r x s minimal parallelograms an



1.3 Curves on grids with more than one edge class: curve-sets
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Figure 1.3.1-A: (2, 3)-patches on the square grid, separated by the diagonal light blue
lines. Each of the 24 edges in a patch has a unique color and equivalent letter.

(r, s)-patch. Figure 1.3.1-A shows (2, 3)-patches on the square grid. A patch has the
same rotational symmetries as the grid. The group of the translational symmetries of
the patch is finite; it is the direct product of two cyclic groups of orders r and s.

Let G be the group of all symmetries of the edges for a patch. Consider the group
action G X X — X where X is the set of the edges in the patch. Observe that
no element in G apart from the identity fixes any edge. This is trivially true for
translations, but also true for rotations as we consider directed edges and disallow
reflections. The set of group elements fixing an element (edge) z is called the stabilizer
of z, denoted as Stab(z). We just observed that the stabilizer of all elements contains
just one element, the neutral element of the group, so |Stab(x)| = 1.

Burnside’s lemma (see [13, Theorem 25.17, p. 293-294]) tells us that
|Orb(z)| - [Stab(z)| = |G| Ve e X

where |Orb(z)| is the number of edges equivalent to the edge x and |G| the number
of elements of G. This is called the Orbit-Stabilizer Theorem, see [1, Theorem (17.2)
and Corollary (17.3), p. 94]. Now |Stab(z)| =1, so

|Orb(z)| = |G| Ve e X

In other words, all equivalence classes have the same size, namely |G|. Note that our
argument falls apart when either using undirected edges or including reflections in the

group.

1.3.2 The prototiles of a grid

The prototiles of a grid fall into two classes, some have CCW sense of rotation
(tiles [A++]% and [B++++] in Figure 1.3.0-A on page 6), others have CW sense (tile
[A---B---]? in Figure 1.3.0-A). The first iterates (with respect to our curve-set) of
the CCW prototiles are shown in Figure 1.3.2-A.

In the limit, each prototile obtains a shape determined by the curve-set, see Figure 1.3.2-
B. These shapes are mutually self-similar: the shape of the tile [A++]% is that of the
smaller blue regions, the shape of [B++++]3 is that of the red regions. The two CCW
prototiles tile the plane as shown in Figure 1.3.2-C.

patch



1.3 Curves on grids with more than one edge class: curve-sets

Figure 1.3.2-A: First iterates of the prototiles [A++]6 (left) and [B++++]3 (right).

o

Figure 1.3.2-B: Shapes of the CCW prototiles [A++]% (left) and [B++++]? (right), note
the mutual self-similarity.

Figure 1.3.2-C: Together, the two CCW prototiles tile the plane.



1.4 Refined grid colorings

There is just one CW prototile, shown in Figure 1.3.2-D. Its shape is self-similar, it
can be decomposed into 19 smaller copies of itself (colored by orientation, right in
figure). The CW prototile tiles the plane, occurring in three orientations.

Figure 1.3.2-D: First iterate (left) and shape (right) of the CW prototile [A---B---]%.

What we observed here is always true. All prototiles of one sense of rotation (CW or
CCW) are mutually self-similar. Also, all prototiles of one sense of rotation together
tile the plane.

The exponent in the notation for a prototile is the guaranteed rotational symmetry of
the shape of the tile. For example, the tile [B++++]3 will have at least 3-fold rotational
symmetry. Sometimes greater symmetries are possible, as we will show later. For
brevity, we sometimes call a k-fold rotational symmetry just k-fold symmetry.

1.4 Refined grid colorings

The grid colorings considered so far correspond to the full group G of the symmetries
of the grid. These are the minimal colorings of the grid, containing the least number
of classes. Using a finite subgroup of GG one obtains refined colorings, containing more
classes.

One can always put each edge in a patch into its own class. Figure 1.3.1-A on
page 8 shows such a maximally refined coloring for (2, 3)—patches on the square grid.
The maximally refined coloring on the square grid was used in [4, pp. 132-134] for
(1,1)-patches and [4, pp. 136-138] for (1, 2)—patches.

1.4.1 A first example: a coloring of the square grid with two colors

As an example of a refined coloring we use the square grid. We reduce the 4-fold
rotational symmetry of the square grid to a 2-fold symmetry to obtain the coloring
shown in Figure 1.4.1-A. We assign the letters L and R respectively to the horizontal
and vertical edges. The prototiles are [L+R+]? and [L-R-]?>. The transitions for this
coloring are L+R, L-R, R+L, and R-L.

The first iterates of a curve-set of order 13 with maps L + L-R-L+R-L+R+L+R-L+R-L-R+L
and R — R+L-R-L-R+L+R+L-R-L-R+L+R are shown in Figure 1.4.1-B. The decompo-
sitions of the curves for L and R into smaller copies of themselves are shown in
Figure 1.4.1-C.

10

k-fold symmetry

mainimal coloring

refined coloring



1.4 Refined grid colorings
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Figure 1.4.1-A: Coloring of the square grid with two colors (left) and its two prototiles
[L+R+]? (middle) and [L-R-]? (right).

e

Figure 1.4.1-B: First iterates for a curve-set of order 13: left for the letter L, right for
R. Coloring by orientation of the edges.

>

Figure 1.4.1-C: Mutual self-similarity of the two curves: each can be decomposed into
smaller copies of both curves. Coloring by orientation of the small copies.

Dekking treated folding curves on this coloring of the square grid [9]. For those folding curves
curve-sets the production of R is obtained from the production of L by reversing it

and swapping turns + with - and letters L with R. In other words, the curve for R is

that of L, in reversed order. The curve we just presented is not a folding curve.

$7 37

Figure 1.4.1-D: First iterates of a folding curve of order 9, curve for L (left) and curve
for R (right). Note that either is the reversal of the other. Coloring by letters.

11



1.4 Refined grid colorings

The first iterates of a folding curve of order 9 with maps L — L+R+L-R+L+R-L+R-L
and R — R+L-R+L-R-L+R-L-R are shown in Figure 1.4.1-D. The shapes of either curve
(both L or R) and either tile ([L+R+]? or [L-R-]?) are shown in Figure 1.4.1-E. That
the shapes of both curves coincide is a consequence of being folding curves.

Figure 1.4.1-E: Left: shape of either curve (L or R), right: shape of either tile ([L+R+]?
or [L-R-]?).

Figure 1.4.1-F: The tile [L+R+]?, colored by orientation of the curves contained (left).
It can be decomposed into 9 small copies of itself of the same orientation, it is a lattice
tile (right).

There is just one CCW prototile and it appears in just one orientation, so it is a lattice
tile. This is shown in Figure 1.4.1-F. The same is true for the CW tile, which (in the

special case of folding curves!) is identical.

1.4.2 Dekking’s tile criteria

In [9], Dekking gives two theorems about folding curves.

Dekking-1: If the first iterate of both tiles ([L+R+]? and [L-R-]?) are self-avoiding,
then all iterates are self-avoiding. In other words, the folding curve is self-avoiding.

12



1.4 Refined grid colorings

Figure 1.4.2-A: First (left) and third (right) iterates of the tile [L+R+]? for a folding
curve that is self-avoiding but not plane-filling. Note the two squares inside the first
iterate that are not traversed. Coloring by curves of the first iterate.

As an example, we use the self-avoiding (but not plane-filling) curves with maps L
+ L-R+L+R-L and R ~ R+L-R-L+R. The first and third iterates of the tile [L+R+]? are
shown in Figure 1.4.2-A.

Dekking-2: If the interiors of both tiles are filled, the curve is plane-filling.

Figure 1.4.2-B: First (left) and third (right) iterates of the tile [L+R+]? for a folding
curve that is self-avoiding and plane-filling. Coloring by curves of the first iterate.

The tile [L+R+]? for the plane-filling curves with maps L ~ L+R-L-R-L+R+L+R-L and
R — R+L-R-L-R+L+R+L-R is shown in Figure 1.4.2-B.

The following generalization of Dekking’s tile criteria for curve-sets appears natural.

Dekking-1 CS: If the first iterates of all prototiles of a grid are self-avoiding then
all iterates are self-avoiding. In other words, the curve-set is self-avoiding.

The proof Dekking gave can be extended to the more general situation of curve sets
[Dekking, 30-November-2023, personal communication].

13



1.4 Refined grid colorings

Note that the condition is equivalent to demanding that the first iterates of all

transitions are self-avoiding.

L
Figure 1.4.2-C: First (left) and third (right) iterate of the tile [L+R+]? for the curve-set
with maps L — L+R-L and R + R. Coloring by the curves of the first iterate.

The following is wrong for curve-sets.

Dekking-2 CS (A): If the interiors of all prototiles are filled, the curve-set is
plane-filling.

Dekking [8, Figure 15, p. 14] gave an example where the second criterion does not
work. We give a slightly simpler one. Consider the curve with maps L — L+R-L and R
+ R. The first and third iterates of the prototile [L+R+]? are shown in Figure 1.4.2-C
(iterates of the other prototile [L-R-]? give essentially identical images). The iterates
of L give arbitrarily long zigzag lines (and L is constant). This is certainly not a
plane-filling curve.

One would hope for the following to be true.

Dekking-2 CS (B): If no letter is constant and the interiors of all prototiles are
filled, the curve-set is plane-filling.
Sadly, this is still wrong. A counterexample is the curve-set (on a coloring of the
square grid treated in Section 2.1.5 on page 22) with maps

A |--> A+B-A

B |[--> B-A+B-A+B-A+B-A+B

C |--> C+D-C+D-C+D-C+D-C

D |--> D-C+D

pvwC b

Figure 1.4.2-D: First iterate of the tile [A+B+C+D+]! of a curve-set without any constant
letter that is not plane-filling. Coloring by curves of the first iterate.

As shown in Figure 1.4.2-D, the situation is essentially the same as in the last
counterexample: all four curves and the two tiles have the limit shape of a line. This
curve-set was found by Daniel Fischer [10].

The situation is not dire, though. Curve-sets that are not plane-filling are recognized
easily.

The substitution matrices of both (counter)examples are reducible (as defined in [12,
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1.4 Refined grid colorings

Definition 6.2.21, p. 403]). For the last example it is

2 4 00
1 500
00 5 1
00 4 2

This is clearly reducible, it even is of block-diagonal form. For the example with one
letter constant the substitution matrix is reducible as well.

It appears that an irreducible substitution matrix implies that a curve-set is plane-
filling. However, this is not a necessary condition: we’ll present plane-filling curve-sets
with one or more letters constant; their substitution matrices are reducible.

1.4.3 Creating refined grid colorings

For the sake of simplicity, we use the square grid for our description of a systematic
way of finding colorings.

For each coloring there is a minimal vector § = [r, ¢| with r, ¢ > 0 such that every
square is moved to a copy of itself by any shift (along diagonals) [i - r, j - ¢] with
i, j € Z. Figure 1.3.1-A on page 8 shows a coloring with 24 colors where §'= [2, 3].

A computer search

A systematic search for colorings can proceed as follows. Choose a vector 5= [R, C]
with R, C' > 0 and work on the toroidal graph obtained by connecting edges at
opposite sides as required. Tentatively assign colors to edges in all ways satisfying
the unique transition property. Some of the colorings found are duplicates of another
coloring after a suitable permutation of letters; these must be discarded.

The search will find all colorings whose minimal vectors § = [r, ¢| are such that r
divides R and c divides C.

Let G be the group of symmetries of the toroidal graph.

One will always find the maximally refined coloring with all edges in different classes,
corresponding to the trivial subgroup of G consisting of just the neutral element (see
Figure 1.3.1-A on page 8). For this coloring we have §= [R, C].

One will also always find the minimal coloring corresponding to the whole group G
(for the square grid just one edge class). For this coloring we have §= [1, 1].

A A A A A E B B B B B B B B
BY Al - BRY Al - BRY Al _RY AI_RY AY ALl AY AL AY Al AY Al AY 2
2 B B B B B B B B 2 B B B B B B B B
BleAY BleAY BRILAY BRI AY BRI/ Al AY AL AY Al AY AL AY Al. )
N S A S N N N N E B B B B B B B B
BY Al -BRY Al - BRY Al _RY AI_RY AY Al AY AL AY Al AY Al AY £
2 B B B B B B B B 2 B B B B B B B B
BleAY BleAY BRIAY Bl AY BIlo/ Al AY AL AY Al AY AL AY Al, )
A h 2R 2 R AR E B B B B B B B B
BY Al -BRY Al - BRY Al _RY AI_RY AY ALl AY AL AY Al AY Al AY 2
2 B B B B B B B B 2 B B B B B B B B
BleAY BleAY BRIAY BRI AY Bl o/ Al AY AL AY Al AY AL AY Al )
A b A b & b »
Figure 1.4.3-A: The two colorings using two colors: § = [2, 2] (left) and § = [1, 1]

(right).

We did such a search for the square grid. There are two colorings using two colors, as
shown in Figure 1.4.3-A. The vector § is given for each coloring.

Figures 1.4.3-B, 1.4.3-C, and 1.4.3-D show all five colorings with four colors and the
one coloring with five colors.
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1.4 Refined grid colorings

V‘b DVB -
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[2, 1] (right).

g

[2, 2] (left) and

Figure 1.4.3-B: Two colorings using four colors: §
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§=11, 1] (right).

(2, 2] (left) and

Figure 1.4.3-C: Two colorings using four colors: §

[5, 5] (right).

Grid coloring with many colors tend to lead to curve-sets that look just random, see
So one may focus on colorings with only a few colors. Some ad hoc constructions tend
to work. For example, the coloring of the triangle grid shown in Figure 2.2.4-A on
page 32 was obtained by dropping the rotational symmetry around the center of the
triangles. To verify a tentative coloring, one just has to check the unique transition
Indeed, we obtained all grid colorings in an ad hoc manner, except for the square grid.

> N PN S= T

o & w & g

\ > NL Jlw Y

w a o o A& w

4‘E A‘C Py )
d w o A&
\ Vw 4
w @ 4 J

- Q0. Ja VY

A o w @
o) > ol
Jd w A o

> Yo w la Y

> 1= &

w & g Jd w
ow Yl Yo
> P& >

A o & w & g

YO o M o Y.
» ’ » -
> a_ ala

4 &' 4 & 4 &

Yool Yool Yoo

L d L4 d 4 d

. \ =9 VYVa.la Y

4 & 4 & 4 &4

Yo.lao Yoo loo Yoo

L d L4 d 4 J

g Yo Yo.la Y

4 & 4 & 4 &4

Yoo la Yool Yoo

L d L4 d 4 J

Jda Yo, la Yo,la ¥

4 & 4 & 4 &4

Yool Yool Yoo

8 P P

o \ =0 \ =0 \ 4

s b s

Figure 1.4.3-D: A coloring using four colors with § = [2, 2] (left) and the unique
[4, Figure 15, p. 137] for one example on the square grid using eight colors.

coloring using five colors with §
Ad hoc methods

property.
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2 Examples of curve-sets

A relentless onslaught of examples lies ahead of you. Enjoy.

2.1 The square grid
Here we use turns by 90 degrees (27/4).

2.1.1 The minimal coloring with one color

Gy &1
Gy

Figure 2.1.1-A: First iterate of a curve of order 29 on the square grid (left) and third
iterate as area drawing (right). Coloring by edges in the first iterate.

Examples of curves on the minimal coloring are given in [2, Section 6.2, pp.60-64]. A
curve with 2-fold rotational symmetry is shown in Figure 2.1.1-A. The coloring is by
the edges of the motif in the left. The map of the curve is

F |--> F+F+F-F-F-F+F+F-F-F-F+F+F-F-F+F+F-F-F+F+F+F-F-F+F+F+F-F-F

2.1.2 A coloring with two colors

LY F>< [eA 4 F>< QY F>< GVY F><

* 6 % 6 % 66 % 6
e U e U e U e § E G E

F T F % F &+ F % < 3 - 'y £ >
RY F>< GY F>< GY F>< GY F>< F G G
lt G lb G lb G lt‘ G 4 F: Y Go < EY
;>< EY G;< EY G>< EY G>< EY

F * F ** F % F %
BY FEJ. GY FJI., GV FJ. GY Falg

A 1= A 1= A 1= A 1=

Figure 2.1.2-A: Coloring of the square grid with two colors (left) and its three prototiles
(right).

We use the coloring shown in Figure 2.1.2-A (this is the coloring shown on the left in
Figure 1.4.3-A on page 15). Our curve-set of order 25 has the following maps:

F |--> F+F+F-G-F+F-G-F-G+G+G-F+F-G-F-G+G+G+G-F+F+F-G+G-F

G |--> G-F+F-G+G+G-F+F+F-G-F+F+F-G-F-G+G+G-F-G-F+F-G+G+G
The first iterates of the two curves are shown in Figure 2.1.2-B. These curves are
mutually self-similar, see Figure 2.1.2-C.
The CW prototile [F-G-]? is self-similar, it can be decomposed into smaller copies of
itself, appearing in two orientations, as shown in Figure 2.1.2-D.

The CCW prototiles are [F+]* and [G+]*. Their iterates will have 4-fold rotational
symmetries and be mutually self-similar. However, for this curve-set the iterates
of the two CCW prototiles are squares, so the mutual self-similarity is boring (the
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2.1 The square grid

€

£F - f
E G

G
F
E G

CErSf
. f

G
F—&

Figure 2.1.2-B: Motifs for the two curves for F (left) and G (right).

F

Figure 2.1.2-C: Mutual self-similarity of the curves F (left) and G (right). Coloring
cycling through 12 colors in the small copies.

Figure 2.1.2-D: The CW prototile [F-G-]? is self-similar and tiles the plane.

5 x 5 chessboard pattern). For an example of non-trivial mutual self-similarity see
Figure 2.1.2-E. The curve-set is of order 25 and has maps

F |--> F+F+F-G-F+F-G-F-G+G+G-F+F-G-F-G+G+G+G-F+F+F-G+G-F

G |--> G-F+F-G+G+G-F+F+F-G-F+F+F-G-F-G+G+G-F-G-F+F-G+G+G
Curve sets where both curves have reflection symmetry exist, an example with order
49 is shown in Figures 2.1.2-F and 2.1.2-G. The maps are

F |--> F+G-F+G+F-G-F-G+F-G-F+G-F+G+F-G-F+G+F+G-F+G+F-G-F+G-F-G-F+G+F+G-F+G-F-G-F+G+F+G-F
G |=-=> G+F-G+F+G-F-G+F-G-F-G+F+G+F-G-F-G+F-G+F-G+F+G-F-G+F+G-F+G+F+G-F-G-F+G+F+G-F+G-F-G+ \
F-G-F-G+F+G+F-G+F-G-F-G+F+G+F-G
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2.1 The square grid

R

Figure 2.1.2-E: Mutual self-similarity of the CCW prototiles of a curve-set. Small
copies of the left and right prototile respectively in blue and red.

'

Figure 2.1.2-F: First iterate of the two curves of a curve-set of order 49. Curves F
(left) and G (right). Coloring by orientation of the edges.

A¥

Figure 2.1.2-G: Fourth iterate of the two curves of a curve-set of order 49. Curves F
(left) and G (right). Coloring by orientation of the small curves.

19



2.1 The square grid

2.1.3 The other coloring with two colors

This is already treated in Section 1.4.1 on page 10, here we just give a numeration
system corresponding to the tile of a folding curve.

Complex numeration system

The numeration system for the folding curve with maps
L |--> L+R+L-R+L+R-L+R-L
R |--> R+L-R+L-R-L+R-L-R

whose motifs are shown in Figure 1.4.1-D on page 11.

Figure 2.1.3-A: First (left) and fifth (middle) iterate of the CCW tile and the
fundamental region of the corresponding numeration system (right).

The first iterate of the tile is shown on the left in Figure 2.1.3-A. We take the central
square as the origin of the complex plane. The coordinates of all 9 squares give the set

D={0, 41 —i, =144, +2, —2, +1+3i, —1 — 3i, +2+ 2, —2 — 2i}

A numeration system with radix +3 and digits D has the fundamental region shown

on the right. The fundamental region of a numeration system is the set of numbers fundamental region
whose expansion has zero integral part in their expansion (in that numeration system),

see [2, Section 3.3, pp. 20-26].

A complex numeration system corresponding to the tile of a folding curve of order 5 is
shown in [3, Figure 7, p.182].

2.1.4 A coloring with four colors

i
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B B
Y Co \ Y C. \
B ! B !

D D D
y y y

Bole A Y Al AY AN AY AJle AN

Figure 2.1.4-A: A coloring of the square grid with four colors (left). The prototiles
are [A+B+C+D+]* and [A-B-C-D-]* (right).
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2.1 The square grid

With the coloring shown in Figure 2.1.4-A (same as left in Figure 1.4.3-D on page 16)
the sequence of letters in any curve is always A, B, C, D, A, B, C, D, ..., regardless of
the turns. Each prototile appears in two orientations.

A curve-set of order 49

Our curve-set of order 49 has the maps

A |--> A+B-C+D+A-B-C-D+A+B-C+D-A-B-C+D-A+B-C+D-A+B+C-D-A+B+C+D-A-B+ \
C-D+A+B+C-D+A-B+C-D-A+B-C-D-A+B+C+D-A+B-C-D-A+B+C+D-A

B |--> B+C-D+A+B-C-D-A+B-C-D+A-B+C+D-A-B+C+D+A-B+C+D-A-B+C-D-A-B+C+ \
D+A-B+C+D-A-B-C+D-A-B+C-D+A+B+C-D+A-B

C |--> C+D-A+B-C+D-A-B-C+D-A+B-C+D+A-B+C-D+A+B+C-D+A-B-C+D-A-B-C+D+ \
A+B-C+D-A-B-C+D+A+B-C

D |--> D+A-B+C+D-A-B-C+D+A-B-C-D+A-B+C-D+A+B-C-D+A+B+C-D-A+B+C+D-A+ \
B-C-D+A-B-C-D+A+B+C-D+A-B-C-D+A+B+C-D

The mutual self-similarity of the four curves is shown in Figure 2.1.4-B. All curves
have reflection symmetry.

L3>

A

D
Fer

o

£ £ £

: =

0y

Figure 2.1.4-B: Mutual self-similarity of the curves (from left to right) A (small copies
black), B (small copies blue), C (small copies red), and D (small copies green). First
iterates in top row, third iterates in bottom row.

A curve-set of order 5 and a numeration system

Our curve-set has the maps

A |--> A-B+C
B |--> D+A-B-C-D+A-B+C+D+A-B
C |--> C-D+A

D |--> B-C+D
Their motifs can be gleaned from the left depiction in Figure 2.1.4-C. A lattice tile
is created by combining two CW tiles [A-B-C-D-]! into the axiom A-B-C-D+A-B-C-D.
The fifth iterate of this is shown in the middle of the figure. The corresponding
numeration system is shown on the right. It has radix —2 4 ¢ and the digit set is
D={0, +1, -1, +1 —4, =1+ i}

The digits correspond to the positions of the centers of the small copies of lattice tiles.
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2.1 The square grid

Figure 2.1.4-C: First iterate of the lattice tile with axiom A-B-C-D+A-B-C-D, coloring
by curves (left). Sixth iterate of the lattice tile, decomposed into smaller copies of
itself (middle) and the corresponding numeration system (right).

N~

cB
D A

A 05 »
Figure 2.1.4-D: Attempt to decompose the first iterate of the lattice tile

A+B+C+D-A+B+C+D- into smaller copies of itself (left) and fourth iterate with this
coloring (middle). Several such tiles, loosely assembled to tile the plane (right).

We remark that the CCW lattice tile cannot be decomposed into smaller copies of itself.
The left in Figure 2.1.4-D shows an attempt to do so, starting from the two central
squares. Both the light green and the dark green parts are disconnected. It is still a
lattice tile, the whole place can be covered with translated copies of it. Unsurprisingly,
we cannot give a numeration system corresponding to it.

2.1.5 Another coloring with four colors

cy alecy alecy ol

D D D D
cv cv cv cv
C C C

2 C 5 2 C Al.C A
D t D D t D t D ¢ A=D
Y Y Y Y Y
%D ¢ %D ¢ AD ¢ AD ¢ A ” Cvy
cV cV cV cV

Figure 2.1.5-A: A coloring of the square grid using four colors (left) and its prototiles
[A+B+C+D+]! (middle) and [A-D-C-B-]' (right).

The coloring together with its prototiles is shown in Figure 2.1.5-A, it is the same
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2.1 The square grid

as shown in Figure 1.4.3-C on page 16 (right). Either prototile occurs in just one
orientation, both are lattice tiles.

All curve-sets presented here where found by Daniel Fischer [10].

A curve-set of order 4

Figure 2.1.5-B: A curve-set drawn with the axiom A+B+C+D-C-B-A connecting both
prototiles (left). The seventh iterate of this is shown on the right.

We consider the curve-set of order 4 with the following maps

A |--> D+A-D-C-B+C+D

B |--> A-D+A+B-A

C |--> B+C-B

D |-->C
An image combining both prototiles is shown on the right in Figure 2.1.5-B on page 23.
The shape of the CW prototile is the twindragon, that of the CCW prototile a square.

A curve-set of order 7

=9

Figure 2.1.5-C: Iterate 6 of the CCW prototile of a curve-set of order 7 (left, coloring
by curves). Iterate 6 of the CCW tile of a curve of order 7 on the trlangle grid (right,
coloring by orientation of the curves).

A curve-set of order 7 with maps

A |--> A-D+A
B |--> B-A+B
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2.1 The square grid

C |--> C-B-A+B+C-B+C+D+A-D-C-B+C
D |--> D+A-D+A-D-C-B+C+D

The CCW prototile shown on the left in Figure 2.1.5-C looks like a deformed Gosper
island, a figure that is not expected on the square grid. The Gosper island on the right
is the CCW tile [F+]2 on the triangle grid (minimal coloring) using the curve with map

F |--> F+F-F-F+F+F-F

The next example is of the same nature.

A curve-set of order 3

Figure 2.1.5-D: Iterate 10 of the CCW prototile for a curve of order 3 (left). Iterate
10 of the CCW prototile for terdragon (right).

A curve-set of order 3 with maps
A |--> A+B-A

B |--> B+C-B
C |--> C+D+A-D-C
D |-->D

The CCW prototile is shown on the left in Figure 2.1.5-D, only three curves are
apparent because D is a constant. All three curves look like distorted terdragons: The
right image shows the CCW tile [F+]? of the terdragon (again on the triangle grid).
Its map is

F |--> F+F-F

A curve-set of order 6
Both prototiles of a curve-set of order 6 are shown in Figure 2.1.5-E. The maps of this
curve-set are

A |--> A-D-C+D-C-B+C+D+A-D+A
B |--> B-A+B-A-D+A+B

C |--> C-B+C-B+C

D |[-->D

There is no valid excuse for presenting this, but we do like the looks.
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2.2 The triangle grid

Figure 2.1.5-E: Iterate 6 of the CCW (left) and CW prototile (right) of a curve-set of
order 6.

2.2 The triangle grid
Here we use turns by 120 degrees (27/3).

2.2.1 The minimal coloring with one color

Examples of curves on the minimal coloring are given in [2, Section 6.1, pp.56-59].

Figure 2.2.1-A: Third iterates of the tiles [F+]? (left) and [F-]? (right) of a curve of
order 25. Both have reflection symmetry. Coloring by orientation of curves.

We give an example where both tiles have reflection symmetry. The curve of order 25
with map

F |--> FOF+F+F-F-FOF-FOF+F+F-F-FOF-FOF+F+F-FOFOF+F-F+FOF
gives the tiles shown in Figure 2.2.1-A.
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2.2 The triangle grid

2.2.2 A coloring with three colors

G G

AVAVAVNTAVA
Figure 2.2.2-A: A coloring of the triangle grid with three colors (left) and its four
prototiles [F+]3, [G+]3, [H+]3, and [F-H-G-]! (right).

We use the grid coloring shown in Figure 2.2.2-A, together with its prototiles.
Our curve-set is of order 25 and has maps
F |--> F+F-H+H-G-FOG+GOHOF

G |--> G-F+F-H+H+H-G+G+G-FOG-FOG-F-H+H+HOFOG
H |--> H-G+G-F+F-H+H+HOFO0G-FOG+GOH-G-F+F-H+H

The motifs of the curves are shown in Figure 2.2.2-B.

PRy

Figure 2.2.2-B: Motifs for the curves of a curve-set of order 25. From left to right,
motifs for curve F, G, and H.

The three CCW prototiles, [F+]?, [G+]3, and [H+]?, have 3-fold rotational symmetry
and are mutually self-similar as shown in Figure 2.2.2-C.

The arrangement (F+F+F)-(H+H+H) - (G+G+G) of the CCW prototiles tiles the plane
by itself (it is a lattice tile), it is shown in the lower right

The one CW prototile [F-H-G-]! tiles the plane, appearing in three orientations. Its self-
similarity is shown in Figure 2.2.2-D (left). The arrangement (F-H-G)+(G-F-H) +(H-G-F)
of the prototile [F-H-G-]! in its three orientations tiles the plane, appearing in just
one orientation (so it is a lattice tile again), see Figure 2.2.2-D (right). Neither the
prototile nor the arrangement have any rotational symmetry.
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2.2 The triangle grid

Figure 2.2.2-C: Mutual self-similarity of the CCW prototiles [F+]3 (upper left), [G+]?
(upper right), and [H+]? (lower left). Each is composed of smaller copies of all three of
the prototiles. The arrangement of three prototiles (lower right) is a lattice tile.

Figure 2.2.2-D: Self-similarity of the CW prototile [F-H-G-]! (left). The prototile tiles
the plane, appearing in three orientations. The arrangement of three prototiles (right)
is a lattice tile.



2.2 The triangle grid

2.2.3 Another coloring with three colors

A— -\~

WA’VAVAVA’VA‘VA‘V
RTAVA

iz

Figure 2.2.3-A: Coloring of the triangle grid (left), its two prototiles [A+B+C+]! and
[A-B-C-]' (right). Both prototiles appear in three orientations.

The grid coloring is shown in Figure 2.2.2-A. With this coloring the sequence of letters
in any curve is always A, B, C, A, B, C, ..., regardless of the turns.

A curve-set of order 16

Figure 2.2.3-B: Motifs of the curves A (left), B (middle), and C (right).

Our curve-set is of order 16 and has maps

A |--> A+B-C+A-B-COA+BOC-A-B+C-A+B+COAOB+C-A
B |--> B+C-A+B-C-AOB+C-A+B+COA-B-C+A-BOC+A+B-C+A0B-C-A+B
C |--> COAOBOC

The first iterates are shown in Figure 2.2.3-B.

Each prototile appears in three orientations, the iterates of either tile the plane. The
CCW prototile [A+B+C+]! is shown in Figure 2.2.3-C, the CW prototile [A-B-C-]! in
Figure 2.2.3-D.

Here one can easily build six lattice tiles, see Figures 2.2.3-E and 2.2.3-F. Each has a
3-fold rotational symmetry.
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2.2 The triangle grid

& &

Figure 2.2.3-C: The CCW prototile [A+B+C+]! split into curves (left) and its decompo-
sition into smaller copies of itself showing its self-similarity (right).

v @

Figure 2.2.3-D: The CW prototile [A-B-C-]! split into curves (left) and its decomposi-
tion showing its self-similarity (right).

S e o
VPHEHAL

Figure 2.2.3-E: Left to right: the lattice tiles (A+B+C-)3, (B+C+A-)3, (C+A+B-)3,
(A-B-C+)3, (B-C-A+)3, and (C-A-B+)3. The bottom row shows the corresponding area
drawings.
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2.2 The triangle grid
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Figure 2.2.3-F: Third iterates of the lattice tiles. Top row, left to right: (A+B+C-)3,
(B+C+A-)3, and (C+A+B-)3. Bottom row, left to right: (A-B-C+)3, (B-C-A+)3, and
(C-A-B+)3.

Another curve-set of order 16
It is possible for all curves of a curve-set to have a reflection symmetry. The curves of
such a curve-set of order 16 having maps

A |--> AOB+C-A-BOC+A+B-C+AOB-C-A+B-COAOB+C+A-B+C-A
B |--> BOCOA+BOC-A-B+C-AOBOC+A+B-C+A-B
C |--> COAOB+C-A-BOC+A+B-C

is shown in Figure 2.2.3-G.

The covering of the plane with second iterates of the curves is shown in Figure 2.2.3-H.
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2.2 The triangle grid

Figure 2.2.3-G: Mutual self-similarity of a curve-set where all curves have reflection
symmetry. First (left) and fourth (right) iterates.
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2.2 The triangle grid

Figure 2.2.3-H: Second iterates of the curves on the grid.

2.2.4 Yet another coloring with three colors

Figure 2.2.4-A: A coloring of the triangle grid (left) and its two prototiles [A+B+C+]!
and [A-C-B-]! (right).

The coloring of the grid shown in Figure 2.2.4-A has just one CW and CCW prototile.
Note that either prototile appears in just one orientation, so both are lattice tiles.

Curve-set of order 7 and a numeration system

The first curve-set is of order 7 and has the maps

A |--> A+B-A+B+C-B+C-B-A+B-A
B |--> B+COCOC-B
C |--> C+AOAOA-C

The first iterate of CCW tile is shown in Figure 2.2.4-B.
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2.2 The triangle grid

Figure 2.2.4-B: First iterate of the prototile [A+B+C+]!, colored by curves (left). The
same, colored to separate triangles (right).

Now take the lower red triangle of the right image as origin of the complex plane. The
coordinates of all 7 triangles give the set

D= {07 +w6a —We, +w37 —ws, +20J3, 1+WG}

where wy, = exp(27i/k) (a primitive complex kth root of unity). We use D as digits
and the radix —1 + 3wg for the numeration system.

Figure 2.2.4-C: Self-similarity of the prototile [A+B+C+]! (left) and fundamental region
of the corresponding numeration system (right).

The fifth iterate of the CCW tile is shown on the left in Figure 2.2.4-C, together with
the fundamental region of the numeration system on the right.

A curve-set of order 36 whose curves have reflection symmetry
Our second curve-set of order 36 was constructed so that all curves have reflection
symmetry. Its maps are

A |--> A+B-A+B-A+B-A+B-A-COCOCOCOC+A-C+A-C+A-C+A+BOBOBOB-AOAOAOAOA

B |--> B+C-B+C-B+C-B+C-B-AOAOAOAOA+B-A+B-A+B-A+B+C0OCOCOC-BOBOBOBOB

C |--> C+A-C+A-C+A-C+A-C-B+C-B+C-B-A+B-A-C+A+BOBOBOB+C-B+C-B+C-B+C+ \
A-C+A-C+A+B-A+B+C-B-AOAOA-COCOCOCOC

The mutual self-similarity of the three curves is shown in Figure 2.2.4-D.

The self-similarity of the CCW tile [A+B+C+]! is shown in Figure 2.2.4-E. The tile is a
lattice tile and corresponds to the fundamental region of a numeration system with 36
digits.
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Figure 2.2.4-D: Mutual self-similarity of the curves A (top left), B (top right), and C
(bottom).

Figure 2.2.4-E: The CCW tile [A+B+C+]!: first iterate, decomposed into curves (left)
and its self-similarity (right).
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2.2 The triangle grid

A curve-set with uneven growth

Our curve-set has order 6 and maps

A |--> AOA+B-A

B |--> B-A+B+C-B

C |--> C+A-COC-B-A+B+COC
Figure 2.2.4-F shows the first, second, and third iterate of the prototile [A+B+C+]!. So
far, nothing suspect.

Figure 2.2.4-F: First (left), second (middle), and third (right) iterate of the CCW
prototile.

Figure 2.2.4-G: Seventh iterate of the CCW prototile.

However, at higher iterates an uneven growth shows, see Figure 2.2.4-G. The curve-set
is plane-filling, but not in a nice way: the growth in one direction is much faster than
in the other. This curve-set was found by Daniel Fischer [10].

Using the same motif on different colorings

Figure 2.2.4-H: First and second iterates of the CCW tiles of the same shape but
with transitions for different grid colorings. Note the different sequences of letters.

Using the same (shape of) motif with different colorings leads to different shapes
of curves (and tiles) in general. Figure 2.2.4-H shows the CCW tiles [A+B+C]! with
lettering for the coloring in this section (first and second iterate, left) and lettering
according to the coloring of Section 2.2.3 on page 28 (again first and second iterate,
right). The coloring used in the images is by curves: blue for A, red for B, and green
for C.

The seventh iterates of the CCW tile for the coloring in this section is shown on the
left in Figure 2.2.4-1 (the CW tile looks identical). The green part corresponding to the
1-dimensional curve for C isn’t visible at this iterate. Middle and right respectively show
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2.2 The triangle grid

the CCW and CW tiles for the coloring of Section 2.2.3. The green part corresponding
to the curve for C suggests it is 2-dimensional.

Figure 2.2.4-1: The CCW tile using the grid coloring in this section (left). The CCW
(middle) and CW (right) tile using the grid coloring from Section 2.2.3.

The lozenge-shaped tile may not look terribly exciting but there is a numeration
system with the fundamental region of just that shape with radix —2 and the set of
digits {0, +1, +we, +1 4+ wg} where wg = exp(27i/6). In addition the shapes of both
curves A and B are triangles, which does not happen for any curve on the minimal
coloring.

2.2.5 A coloring with four colors

Figure 2.2.5-A: A coloring of the triangle grid with four colors (left), its CCW tiles
[A+]3 and [B-C-D-]! (middle), and its CW tiles [B-]? and [A-C-D-]! (right).

The coloring we use is shown in Figure 2.2.5-A; together with its prototiles.
Our curve-set of order 9 has maps

A |--> A+A-C-DOC+D+B-BOA

B |--> B+C-D-A0B+C+D-AOB

C |--> C+D-A-COD+B+C-D+B-B-BOA+A+A-C

D |--> DOCOD
The first iterates of the curves are shown in Figure 2.2.5-B.

Though the motifs of all curves have reflection symmetry, only curves C and D keep it
with higher iterates. This can be seen in Figure 2.2.5-C where mutual self-similarity
of the curves is also shown.

The curves tile the plane as shown in Figure 2.2.5-D. Note that the blue regions each
consist of three curves A and the red regions each consist of three curves B.
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2.3 The trihexagonal grid
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Figure 2.2.5-B: From left to right: motifs of the curves A, B, C, and D.

Figure 2.2.5-C: From left to right: Third iterates of the curves A (small copies blue),
B (small copies red), C (small copies green), and D (small copies pale pink).

Figure 2.2.5-D: Tiling of the plane with our curves.

2.3 The trihexagonal grid
Here turns are by 60 degrees (27/6).

2.3.1 The minimal coloring with one color

Examples of curves on the minimal coloring of the trihexagonal (or trihex- or (3.6.3.6)-
grid or kagome lattice, see Figure 2.3.1-A) are given in [2, Section 6.3, pp. 66-71].

Figure 2.3.1-B shows the motif (left) and both tiles of a curve of order 67 with the
map
F |--> F--F+F--F+F--F+F--F+F+F--F+F--F+F+F--F+F--F+F+F+F--F+F+F--F--F+F+F--F+F--F+F+F+F-- \
F+F+F--F+F+F+F--F+F+F--F+F--F+F+F+F+F+F--F+F--F+F+F+F--F+F+F+F--F+F+F+F+F
We chose this curve because the motif does not look promising, still, this is a plane-
filling curve. The second iterates of both tiles are shown in Figure 2.3.1-C.
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2.3 The trihexagonal grid

AT &V

Figure 2.3.1-A: Minimal coloring of the (3.6.3.6)-grid (left), the CCW prototile [F+]°
(middle), and the CW prototile [F--]? (right).

Sy g

Figure 2.3.1-B: Motif of a curve of order 67 (left), the CCW tile [F+]® (middle), and
the CW tile [F--]3.

div

Figure 2.3.1-C: Second iterates of the CCW (left) and CW (right) tile of the curve.

2.3.2 A coloring with two colors

The coloring is shown in Figure 2.3.2-A, together with its prototiles [A+B+]® (CCW,
hexagon), [A--]% and [B--]*> (CW, triangles). The CCW tile appears in just one

orientation, so it is a lattice tile.
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2.3 The trihexagonal grid

B A /e B A /e B B BY
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Figure 2.3.2-A: Coloring of the (3.6.3.6)-grid using two colors (left). The CCW
prototile (middle) and the two CW prototiles (right).

A curve-set where the CW prototiles have maximal symmetry

Our curve-set is of order 25 and has maps

A |--> A+B+A--A+B+A--A--A+B+A--A+B--B+A+B+A--A+B+A+B+A+B--B+A--A
B |--> B+A--A+B+A+B+A+B--B--B+A+B--B--B+A+B--B+A--A+B+A+B+A+B--B

Figure 2.3.2-B: From left to right: motif for curve A, motif for tile [A--]3, motif for
1.

curve B, and motif for tile [B--

Figure 2.3.2-C: Third iterates of the CW tiles [A--]? (left) and [B--]? (right). Coloring
by orientation of curves.

The motifs for curves A and B and CW tiles [A--]® and [B--]* are shown in Figure 2.3.2-
B. The third iterates of the CW tiles are shown in Figure 2.3.2-C. The symmetry of the
CW tiles is maximal, including reflection symmetry (this is only possible if the order
is a square). The mutual self-similarity of the CW tiles is shown in Figure 2.3.2-D.

The CCW tile [A+B+]3 has 3-fold symmetry, as shown in Figure 2.3.2-E.
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2.3 The trihexagonal grid

Figure 2.3.2-D: Decompositions of the CW tiles [A--]3 (left) and [B--]* (right) into
smaller copies of themselves. Coloring by orientations of the curves in the small copies.
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Figure 2.3.2-E: Third iterate of the CCW tile [A+B+], colored by orientations of the
curves contained (left). The same, decomposed into 25 smaller copies of itself (right).

A curve-set with one letter constant

Figure 2.3.2-F: First (left), second (middle), and third (right) iterate of a curve-set
with one letter constant. Coloring by letters, blue for A and red for the constant B.

Our curve-set is of order 9 and has the maps

A |==> A+B+A--A--A+B+A--A+B+A+B+A+B--B+A--A+B--B--B+A+B+A+B--B--B+A+B+A+B+A--A

B |-->B
The first, second, and third iterates of the curve A are shown in Figure 2.3.2-F. Note
how the red areas vanish with higher iterates. The shape of the curve has a 2-fold
symmetry in the limit.
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2.3 The trihexagonal grid

Figure 2.3.2-G: Fourth iterate of the curve A, decomposed into 16 smaller copies of
itself. Coloring by orientation of the small copies.

The fourth iterate (Figure 2.3.2-G) is indistinguishable from the curve of order 16 on
the triangle grid with map

F |--> F+F-F-F+F-F+F+FOF-F-F+F-F+F+F-F
The map for F can be obtained from that of A as follows.

# map for A:
A |--> A+B+A--A--A+B+A--A+B+A+B+A+B--B+A--A+B--B--B+A+B+A+B--B--B+A+B+A+B+A--A

# drop all (constants) B:

A |-=> A++A--A——A++A——A++A++A+——+A——A+————+A++A+————+A++A++A-—A
# normalize turns

A |==> A++A-—A--A++A--A++A++A0A--A--A++A-—A++A++A--A

All nonzero turns are by 4120, so we can replace all turns by a single symbol and use
turns by 120 degrees. Finally, replace A by F to arrive at the map given above.

Removing all edges B in the grid (2.3.2-A on page 39) gives the triangle grid with
minimal coloring, so this is not too surprising.

2.3.3 A coloring with three colors

r:/ﬁﬂ F:éﬂx F:éﬂx F:éﬂx r:/ﬁﬂ F:éﬂx 5.4
G ¢ G G G 4

sle bl Dle b BlelF RlF KlF K/AF K/
XWXWXWXWXWX@X
Figure 2.3.3-A: A coloring of the trihex grid with three colors (left) and its prototiles
[F+G+H+]? (middle) and [F--G--H--]! (right).

We use the coloring shown in Figure 2.3.3-A. The CCW prototile [F+G+H+]? now has
2-fold symmetry and the CW prototile [F--G--H--] appears in two orientations.

With this coloring the sequence of letters in any curve is always F, G, H, F, G, H, ...,
regardless of the turns.
We use a curve-set of order 25 with maps

F |--> F+G+H--F+G+H--F--G+H--F+G+H+F+G-—H-—F+G+H+F-—G+H+F+G+H+F--G+H--F
G |--> G+H+F+G--H--F+G+H+F--G--H+F+G--H+F--G+H+F+G--H+F+G+H+F+G--H+F--C
H |--> H+F+G--H+F+G--H--F+G+H--F+G--H+F+G+H+F+G--H
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2.3 The trihexagonal grid

% 7Y

Figure 2.3.3-B: Motifs for the curves F (left), G (middle), and H (right).

The motifs of the curves are shown in Figure 2.3.3-B.

£y

Figure 2.3.3-C: First iterate (left, coloring by curves) and self-similarity (right, coloring
of the small tiles by orlentatlon) of the CW tile [F--G--H--]1.

The self-similarity of the CW prototile is shown in Figure 2.3.3-C, note that the red

and blue small copies appear in two orientations.
k-
g

N 5y
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Figure 2.3.3-D: Third iterate of the CCW tile [F+G+H+]2, colored by curves contained
(left). The same, decomposed into 25 smaller copies of itself (right).

Figure 2.3.3-D shows the 2-symmetric CCW prototile. It is a lattice tile.
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2.3 The trihexagonal grid

2.3.4 A coloring with six colors

In the last few sections we have reduced the rotational symmetry of the CCW tile
from 6-fold, to 3-fold and 2-fold. A coloring with six colors is shown in Figure 2.3.4-A,
it guarantees no rotational symmetry for the CCW tile. It still is a lattice tile.

&
(A

Figure 2.3.4-A: Coloring of the (3.6.3.6)-grid with six colors (left), its CCW prototile
[A+B+C+D+E+F+]! (middle), and its CW prototiles [A--E--C--]! and [B--F--D--]'.

Figure 2.3.4-B: First (left) and fourth (middle) iterate of the CCW tile
[A+B+C+D+E+F+]!, colored by curves contained. The self-similarity of the tile is shown
on the right: it can be decomposed into 16 small copies of itself.

Our curve-set is of order 16 and has maps
A |-=> A--E+F+A+B+C+D--B+C--A+B+C-—A--E+F--D+E+F+A+B+C--A--E+F+A
B |--> B+C+D--B--F+A+B
C |==> C--A+B+C+D+E+F--D+E--C+D--B--F+A+B+C+D+E-~C--A+B+C
D |--> D--B+C+D+E+F+A--E+F--D--B+C+D
E |--> E--C+D+E+F+A+B-~F+A-~E+F--D--B+C+D+E+F+A--E--C+D+E
F |--> F+A+B--F--D+E+F

The motifs of the curves, assembled into the CCW tile, are shown in Figure 2.3.4-B.
The CW tiles are shown in Figure 2.3.4-C. There are two ways of pairing them into

lattice tiles. The first way is to connect them so that the turn B+C is contained. This
arrangement and its self-similarity is shown in Figure 2.3.4-D.

The second way to connect the tiles contains the turn A+B. This arrangement is shown
in Figure 2.3.4-E. It is not self-similar: note that the small copy at the top of the right
image in the figure is incomplete, it is missing the red/yellow/pink part which lies at
the lower right of the image.
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2.3 The trihexagonal grid

B F

Figure 2.3.4-C: From left to right: first and third iterates of the CW tile [A--E--C--]!,
first and third iterates of the CW tile [B--F--D--]1.

;& @

Figure 2.3.4-D: Arrangement (axiom) for a lattice tile (left), its third iterate (middle),
and its decomposition into 16 smaller copies of itself (right).

X

Figure 2.3.4-E: Arrangement (axiom) for a lattice tile (left), its third iterate (middle),
and a failed attempt to decompose it into smaller copies of itself (right).
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2.4 The (3.4.6.4)-grid

2.4 The (3.4.6.4)-grid
Here we use turns by 30 degrees (27/12).

2.4.1 The minimal coloring with two colors

Figure 2.4.1-A: The minimal coloring of the (3.4.6.4)-grid (left). Its CCW prototiles
[A++]6 and [B++++]? (middle), and the CW prototile [A---B---]? (right).

The minimal coloring of the (3.4.6.4)-grid and its prototiles are shown in Figure 2.4.1-A
(same as Figure 1.3.0-A on page 6).

A tedious construction for edge-covering curves on this grid is given in [2, Section 4.2.1,
pp.42-43]. Using the proper amount of edge classes (two, not one!) makes life
considerably easier.

6-fold symmetry is possible for the CCW tile [B++++]3

Sl 26

Figure 2.4.1-B: From left to right: motifs for the letter A and B, and first iterates for
prototiles [A++]% [B++++]3, and [A---B---]? of a curve on the (3.4.6.4)-grid.

The rotational symmetries of the prototiles are six-fold for the [A++]%, at least three-fold
for [B++++]3, and two-fold for [A---B---]%. The prototile [B++++]> may have six-fold
symmetry. An example is the curve-set of order 9 with maps

A |--> A++A++A++A++A-—-B-——A-—-B++++B-—-A
B |--> B++++B---A---B++++B++++B---A---B

The motifs of the curves and tiles are shown in Figure 2.4.1-B.

The first iterate of [B++++]® has six-fold symmetry, see Figure 2.4.1-C. Both prototiles
happen to have the shape of the Koch snowflake, see [6, Figure 3]. Note that this
shape also has reflection symmetry.

The tile [A---B---]? shown in Figure 2.4.1-E can be decomposed into 9 smaller copies
of itself, appearing in three orientations (image on the right).
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2.4 The (3.4.6.4)-grid

. S

Figure 2.4.1-C: Fourth iterates of the prototiles [A++]% (left) and [B++++]> (right).
Coloring by curves and their orientations.

o

Figure 2.4.1-D: Mutual self-similarity of the prototiles [A++]6 (left, small copies blue)
and [B++++]3 (right, small copies red).

Figure 2.4.1-E: Fourth iterate of the prototile [A---B---]? (left, coloring by orientation
of curves contained) and its self-similarity (right, coloring by orientation of small
copies of itself).
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2.4 The (3.4.6.4)-grid

Figure 2.4.1-F: Mutual self-similarity of the prototiles [A]® (left, small copies blue)
and [B]? (right, small copies red) of a curve-set of order 39.

The two CCW tiles shown in Figure 2.4.1-F also have 6-fold symmetry, they belong to
a curve-set of order 39. Here the shapes of the two tiles are different from each other.
The maps of this curve-set, omitting the turns, are

A |--> AABAAAAAABBABBABBABAAAABBBABAABBAAAAAABA

B |--> BBAAABABBABBBABBBAB,BBAAABABBABBBABBBAB

Note that the map for B is a square, as indicated by the comma in its middle. Here we
can omit turns, as the transitions are A++A, B++++B, A---B, and B---A and the two
letters of each transition uniquely determine the turn (this is of course not true in
general).

A curve-set of order 37
The following curve-set is presented because the tiles look quite curious. It has order
37 and the maps (omitting turns again)

A |--> AAAABAAABBABAAABBAA
B |--> BABBBABAAABBBABBBABBBABAABBBABBBABBBAABABBBAAABAAABAAAB

Figure 2.4.1-G: Third iterates of the tiles [A++]6 (left) and [B++++]3 (right). Coloring
by orientation of curves contained.
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2.4 The (3.4.6.4)-grid
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Figure 2.4.1-H: Decomposition of the prototile [A++]% into smaller copies of [A++]°
and [B++++)3. Coloring by orientation of curves (left) and by tiles (right, small copies
of [A++]% blue, those of [B++++]3 red).

Figure 2.4.1-I: Decomposition of the prototile [B++++]3 into smaller copies of [A++]6
and [B++++)3. Coloring by orientation of curves (left) and by tiles (right, small copies
of [A++]% blue, those of [B++++]3 red).

The CCW tiles [A++]% and [B++++]® are shown in Figure 2.4.1-G. Their mutual self-
similarity can be observed in Figures 2.4.1-H and 2.4.1-1. Note that while the prototiles
[A++]6 are separated, the prototiles [B++++]3 are not, making the images slightly difficult
to interpret. The gray borders drawn between the curves are to mitigate this.

A curve-set with letter A constant

Curve-sets whose L-system leaves some of the letters constant exist. Here we have
just one non-constant letter and the curve for it shows simple self-similarity.
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2.4 The (3.4.6.4)-grid
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Figure 2.4.1-J: First (left) and second (right) iterate of the curve B of a curve-set with
A constant. Coloring by orientation of the edges of the first iterate.

Figure 2.4.1-K: Self-similarity of curve B, coloring by orientation of the smaller curves.
The prototile [B++++]3 is the apparent triangle in the center.

Figure 2.4.1-J shows the motif and second iterate of curve B of a curve-set of order 9
with maps

A|-—> A
B |--> BAAAAABABBBABBABB

Figure 2.4.1-K shows the self-similarity of the curve. Note that the curve has the
shape of half of the curve shown on the right in Figure 2.4.1-E on page 46.

A curve-set with letter B constant

¥

Figure 2.4.1-L: First (left) and second (right) iterate of the curve A of a curve-set
with B constant. Coloring by orientation of the edges of the first iterate.

Figure 2.4.1-L shows the motif and second iterate of curve A of a curve-set of order 19
with maps
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2.4 The (3.4.6.4)-grid

A |--> AABBAAABABBABBBAABABBBABBBABAAAAAABBA
B |-->B

Figure 2.4.1-M: Decomposition of the curve A into 19 smaller copies of itself, showing
its self-similarity. Coloring by orientation of the small copies.

The self-similarity of the curve is shown in Figure 2.4.1-M. The apparent lozenges (for
example, at the top right) are the tiles [A---B---]2, colored by their orientation. The
tile [A++]% (6-fold symmetry) can be seen at the lower left.

2.4.2 A coloring with four colors

a

A A A
b - £y - b -
<Y a P / <Y
< A < A <
» - (Y -
a PR / <Y

A A

A

[y b b B
_aVY _aY _aVY
< A < A < B

b - (Y -

b b b >
LoV a _aY _aY b b B
< A~ < A~ <

v > A > > a y

a aV aV a

Figure 2.4.2-A: Coloring of the (3.4.6.4)-grid with four colors (left) and the CCW
(middle) and CW (right) prototiles.

The coloring shown in Figure 2.4.2-A splits the triangular CCW prototile of the
minimal coloring into two classes, prototiles [B++++]3 and [b++++]3.

First curve-set

The curve-set of order 9 has maps

A |--> A---B++++B++++B-—-a++A-—-B--—a-—-b++++b-——-A++a++A
a |--> a++A++a-—-b--—-A---B++++B-——a-—-b++++b++++b——-A++a
B |--> B++++B---a++A---B
b |--> b++++b---A++a-—-b
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2.4 The (3.4.6.4)-grid

BRI

Figure 2.4.2-B: Motifs, from left to right, for A, a, B, and b.

Figure 2.4.2-C: Mutual self-similarity of the CCW prototiles [A--a--]3 (left), [B----]3
(upper right), and [b----]3 (lower right). Coloring by curves and their orientation.

Figure 2.4.2-D: A version of the previous figure that may be easier to decipher:
coloring by tiles.

The CCW tiles shown in Figures 2.4.2-C and 2.4.2-D have reflection symmetry.
Moreover the tile [A++a++]? has 6-fold rotational symmetry.

Second curve-set

The curve-set of order 9 has maps

A |--> A---B++++B++++B-—-a++A-—-B--—a-—-b++++b-——-A++a++A
a |--> at++A++a---b---A---B++++B-——a++A++a

B |--> B++++B---a---b++++b++++b-—-A---B

b |--> b++++b—--A++a-—-b

This curve-set was created by modifying the interior of the CW prototile as shown in

o1



2.4 The (3.4.6.4)-grid

R

Figure 2.4.2-E: Motifs, from left to right, for A, a, B, and b.

Figure 2.4.2-F: CW tile [A-—--B---a---b---]! from the curve-set in the previous
section (left). The same with a triangle removed from curve a (middle). The triangle
attached to the curve B (right), this is the CW tile for our current curve-set.

Figure 2.4.2-F. This technique of removing a polygon from one curve and reattaching

it to another is quite useful for modifying curve-sets.

Figure 2.4.2-G: Mutual self-similarity of the CCW prototiles [A++a++]? (left), [B++++]?
(upper right), and [b++++]3 (lower right). Coloring by curves and their orientation.

The CCW tiles again have reflection symmetry, they are shown in Figures 2.4.2-G
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2.4 The (3.4.6.4)-grid

Figure 2.4.2-H: A version of the previous figure that may be easier to decipher.
Coloring by tiles.

Figure 2.4.2-1: Self-similarity of the CW prototile [A-—-B---a---b---]!, the small
copies appear in three orientations. Coloring by orientation.

and 2.4.2-H.

The CW prototile is shown in Figure 2.4.2-1. It has the same shape as the CW prototile
for the previous section (we did the change inside it).

2.4.3 A coloring with six colors

=T _In
g h g

g h g h

g h g

h g h

h g h g

g h g h

] h g

h\y d 9] cd h\y f

Figure 2.4.3-A: Coloring using six colors (left). The three CW prototiles have 2-fold
rotational symmetry, each is drawn in one color on the right.

)
AN

The coloring shown in Figure 2.4.3-A has three CW prototiles, [F---f---]2, [G---g-—-]?,
and [H---h---]2. Each of these has 2-fold rotational symmetry and appears in just
one orientation.
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2.5 The (3%; 3.3.6.6)-grid

Our curve-set of order 9 has maps

F |=-=> F++G++H++F++G-—-g++++f-—-F-——f-—-F++G---g++++f---F
|-=> f++++h---H---h++++g++++f-—-F-—-f

|-=> G++H++F++G++H---h---H---h++++g---G

|-=> g++++f-—-F-——f++++h++++g-—-G---g

| --> H++F++G++H---h---H

|-=> h++++g---G---g++++f++++h---H---h

B mm @

Figure 2.4.3-B: Mutual self-similarity of the CW prototiles [F-—-f---]? (left, small
copies blue), [G---g---]? (middle, small copies red), and [H---h---]2 (right, small
copies green).

The mutual self-similarity of the three tiles is shown in Figure 2.4.3-B. Observe how

each tile appears in just one orientation. Borders are drawn between the curves, this
helps to spot the borders between the small copies of the blue prototile on the left.

2.5 The (3% 3.3.6.6)-grid
Here we use turns by 60 degrees (27/6).

Figure 2.5.0-A: Grid-graph of the (3%;3.3.6.6)-grid (left) and an area drawing of the
same (right).

The (3%;3.3.6.6)-grid is shown in Figure 2.5.0-A. The grid has five classes of edges,
denoted by the letters A ...E. The transitions are

A+C, B++D, C+A, D++E, E++B,

A-B, B-A, C--D, D--E, E--C,

DOE
Note that there are three transitions from D to E. The CCW prototiles are [A+C+]? and
[B++D++E++]!, and the CW prototiles are [A-B-]? and [C--D--E--]!. We only use this
minimal coloring of the grid.

54



2.5 The (3%; 3.3.6.6)-grid

A curve set of order 16

Our curve-set has order 16 and maps

A |-=> A-B-A+C+A+C+A+C--D++E--C+A-B-A-B-A-B++D++E--C--D++E++B-A
B |--> B-A-B++D--E++B++D--E++B++D--E--C+A-B
C |--> C+A+C--D++E--C--D++E--C--D++E++B-A+C
D |--> D++E--C--DOE++B++D--E++B-A-B-A-B++D
E |--> E--C+A+C+A+C--D++E--C--DOE++B++D--E
It was designed so that the curves have mostly straight borders.

The mutual self-similarity of the five curves is shown in Figure 2.5.0-B. The shapes of
the CCW prototiles are shown in Figure 2.5.0-C. The tiling of the plane by the five

curves is shown in Figure 2.5.0-D.
D E\C
D
D\E/B B

ki
2/ vv
«LZ Fvﬂ

Figure 2.5.0-B: Mutual self-similarity of the curves (left to right, top to bottom): A
(small copies blue), B (small copies red), C (small copies green), D (small copies pale
pink), and E (small copies olive).

VAV &

Figure 2.5.0-C: Mutual self-similarity of the CCW prototiles [A+C+]3 (left, small copies
blue) and [B++D++E++]! (small copies red). Note that all but one of the prototiles
[B++D++E++]! appear in (triangular) clusters of three. The two images colored by
curves (right) may help to see the structure.

95



2.5 The (3%; 3.3.6.6)-grid

Figure 2.5.0-D: Tiling the plane with the curve-set, coloring as in grid.

A curve set of order 13 with just one non-constant symbol

Figure 2.5.0-E: First (left) and second iterate (middle) of the curve for the letter A
(left), a similarly looking curve on the triangle grid (right).

The curve-set of order 13 has the following map for the letter A, all other letters are
constants.

A |-=> A-B++D++E--C+A-B++DOE--C+A-B++DOE~-C+A-B++D--E--C+A-B++D--E--C+A-B++D++E--C+A-B++DOE \
==C+A-B++D++E--C+A-B++D++E--C+A-B++D-~E-~C+A-B++DOE--C+A-B++D--E--C+A
It was created to look similar to the curve of order 13 named R13-15 from [2, Figure 3.1-
A, p. 15] with map

F |--> F+FOFOF-F-F+FOF+F+F-FOF-F

For higher iterates the two curves are hard to tell apart as their limiting shapes are
identical. The fourth iterate is shown in Figure 2.5.0-F. Iterates of the tile [A+C+]?
are shown in Figure 2.5.0-G. The tile has 6-fold rotational symmetry in the limit. For
higher iterates all but the blue and green regions (for the letter A) will vanish.
Indeed any curve on the minimal coloring of the triangle grid can be turned to a
curve-set on the (3%; 3.3.6.6)-grid with all letters but A constant: In the map for the
curve on the triangle grid, replace all + by p, all - by m, all 0 by n, all p by B++D++E--C,
all m by B++D--E--C, all n by B++DOE--C, and all F by +A-, finally remove the leading
+ and the trailing —. This gives the map for A. In our example, the following command
produces the map for A shown above (split into pieces for readability).
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2.6 The (3.4.4.6; 3.4.6.4)-grid

Figure 2.5.0-F: Self-similarity of the curve for the letter A.

Figure 2.5.0-G: Area drawings for the first (left) and second (right) iterates of the tile
[A+C+]3. Coloring by the letters and their orientation in the first iterate.

echo ’F+FOFOF-F-F+FOF+F+F-FOF-F’ | \
sed ’s/+/p/g; s/-/m/g; s/0/n/g;’ | \
sed ’s/p/B++D++E--C/g; s/m/B++D--E--C/g; s/n/B++DOE--C/g; s/F/+A-/g;’ | \
sed ’s/"+//; s/-$//’
Note that dropping all but the A-edges in the grid (Figure 2.5.0-A on page 54) gives
the triangle grid with minimal coloring.

2.6 The (3.4.4.6; 3.4.6.4)-grid

The (3.4.4.6;3.4.6.4)-grid and its prototiles are shown in Figure 2.6.0-A (same as
Figure 1.1.0-B on page 3). The prototiles are [A++]5, [B++++C++++D++++]1 [E+++F+++]2)
[A---B---F---D---]!, and [C--E--]3.

Turns are by 30 degrees (27/12). The transitions are A++A, A-—-B, B++++C, B---F,
C++++D, C--E, D++++B, D---A, E+++F, E--C, and F+++E, and F---D. As the pair of
letters at start and end uniquely determine the turn, we can omit the turns in the
maps to save space.
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2.6 The (3.4.4.6; 3.4.6.4)-grid
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A FLONE
Lo d et 2
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[ Fy

NDFF(DQL_?FFDBDFFD FF<
=8 A 0 S FETS el
Figure 2.6.0-A: Grid-graph for the (3.4.4.6; 3.4.6.4)-grid (left) and its CCW (middle)
and CW (right) prototiles.

A curve-set of order 7 with four constant letters
We give an example of a plane-filling curve-set where only two of the five prototiles
are plane-filling. It has order 7 and just two non-constant maps:

A |--> AAABFEFDABCECECDBFEFDAAA
F |--> FDBFDBFECDBFECECECDBF

The maps for the letters B, C, D, and E are constant. The motifs for A and F are shown

D F
F.; .D/&F
F
D Df

Figure 2.6.0-B: Motifs for the curves A (left) and F (right).

in Figure 2.6.0-B.

w0

Figure 2.6.0-C: First (left) and fourth (right) iterate of the prototile [A++]6.
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2.6 The (3.4.4.6; 3.4.6.4)-grid
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Figure 2.6.0-D: First (left) and fifth (right) iterate of the prototile [E+++F+++]2.

Figure 2.6.0-E: First (left) and fifth (right) iterate of the prototile
[A---B---F---D-—-]%,

Iterates of the prototiles [A++]%, [E+++F+++]2, and [A---B---F---D---|! are respec-
tively shown in Figures 2.6.0-C, 2.6.0-D, and 2.6.0-E. The prototiles [B++++C++++D++++]!

and [C--E--]2 have all edges constant.

Figure 2.6.0-F: Mutual self-similarity of curves A (left) and F (right). Coloring by
curves and orientation.

The mutual self-similarities of the curves A and F are shown in Figure 2.6.0-F. The
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2.6 The (3.4.4.6; 3.4.6.4)-grid

substitution matrix for this curve-set is

DN DN DN DN

SO OO O
S OO = OO
SO = OO O
o= OO OO
U = = = O

The curve for A (corresponding to the first column of the matrix) has dimension 2. The
curve for F (last column) has dimension 2 - log; 5 & 1.65417, as the map for F contains
five letters F (the lower right entry in the matrix) and no letters corresponding to
curves with dimension 2. The constant letters B, C, D, and E do not contribute to
the dimensions of A and F. Any map containing letters corresponding to a curve with
dimension 2 gives a 2-dimensional curve. As the curve for A is the only 2-dimensional
curve in this curve-set, the map for F cannot contain the letter A. It indeed does not,
see the upper right entry of the matrix.

A curve-set of order 31

c %\_&F C\EC
BQF 58 5% CU\?{'\EDCJ. FFDC.)E' FD‘E
s )F} c;_l:P
F

F F
5 by F/{
T
F F
(-

Figure 2.6.0-G: Top to bottom, left to right: motifs of A, B, C, D, E, and F. Start and
end marked for each curve. Coloring by letters.

Our curve-set is of order 31 and has maps

A |--> ABCDAABFEFDABCECECDBFEFDABCECDBFDBFDBCEFDBCECEFDABCDA
| -—> BFEFDBFECECECDBFDAAAABCDAAB

| -—> CEFDABCEFEFDAABCDAAABFEC

| -—> DBFDAAAAAABFDBCECECEFEFD

| -—> ECDABFECDBFDBFEFDBCECECDABCDAABFDBFE

F |--> FECECECDBFEFDABCDABFEF

The first iterates of the curves are shown in Figure 2.6.0-G.

moaQw

A coloring by orientation of the undirected edges of the grid is shown in Figure 2.6.0-
H. This coloring brings out the bands of squares in the grid. For the CW tiles in
Figure 2.6.0-1 this coloring is used.

The mutual self-similarities of the CCW tiles is shown in Figure 2.6.0-J. Line drawings
of the motifs on the left, area drawings of the third iterates on the right.
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2.6 The (3.4.4.6; 3.4.6.4)-grid

Figure 2.6.0-1: First iterates of the CW prototiles [A---B---F---D---|! (top left) and
[C--E--]? (to right). Third iterates of the same at the bottom. Coloring by orientation
modulo 180 degrees.
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2.6 The (3.4.4.6; 3.4.6.4)-grid

Figure 2.6.0-J: Mutual self-similarity of the CCW prototiles [A++]% (top, small copies
blue), [B++++C++++D++++|! (middle, small copies red), and [E+++F+++]? (bottom, small
copies green).
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3 Curve-sets for grids with odd valencies

Figure 3.0.0-A: The tiling of the plane with hexagons. The vertex configuration is
(63), three edges are incident to each point.

So far we gave curve-sets for grids where every point has even valency (number of
incident edges).

In the hexagon grid shown in Figure 3.0.0-A every point has valency 3. Every time a
curve visits a point it needs to leave. That is, we seemingly have the problem that at
a point of odd valency we cannot avoid creating a dead end.

The solution is quite simple: edge bifurcation. We declare some edges to be anti-
parallel pairs of edges. Once all points have even valency we can work (almost) as
before. For our examples we always turn all edges into double edges.

Any such pair of double edges creates a digon, which has to be considered a prototile.
At both ends of a digon a turn by 180 degrees (U-turn) can appear, we reserve the
symbol ! to specify U-turns in the Lindenmayer system. In our examples these digon
tiles are always CW.

One can also create double edges where it is not strictly needed, we will do so for the

square grid and the triangle grid.
: P N
_‘_\5 AA

Figure 3.0.0-B: First iterate of a curve on the triangle grid with double edges: line
drawing (left) and area drawing (right). Areas are on the left of the edges.

In the area drawings the area assigned to an edge will be on its left, see Figure 3.0.0-B
(compare to Figure 1.2.0-B on page 6).
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3.1 The hexagon grid

3.1 The hexagon grid

Figure 3.1.0-A: The hexagon grid with double edges (left). In the area drawing (right)
each edge corresponds to the triangular area left of it, coloring by orientation.

In the hexagon grid with double edges is shown in Figure 3.1.0-A. Each edge is
responsible for an area to its left,

There is just one edge class; we use the letter A for it.
Here we use turns by 60 degrees (27/6).

The transitions are A+A, A-A, and A!A. There is one CCW prototile [A+]®, a lattice tile,
and one CW prototile [A!]2, a digon tile.

A curve of order 25

0 8 o

Figure 3.1.0-B: Border of the CCW tile [A+]% (left) and tile filled with a curve of order
25 (right). First iterates, coloring by orientation of the curves.

Creating a curve is quite easy. Start with a (self-avoiding) curve with 2-fold symmetry.
The symmetry is necessary to make the digon tile work.

Now we have a CCW tile [A+]® which is not yet filled, shown in Figure 3.1.0-B (left).
The unfinished curve has the (incomplete) map

A |--> A+A-A+A+A+A+A-A-A-A-A+A-A

Filling the tile is possible in more than one way. The completion shown on the right
corresponds to a curve with the map

A |--> A+A+AVA+A+A+A+A+A-A+AVA+A+AVA+A+A+A+A T A-A-A+A+A-A

Area drawings of the tiles are shown in Figure 3.1.0-C (CCW) and Figure 3.1.0-D
(CW, digon).
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3.1 The hexagon grid

A

Figure 3.1.0-C: Area drawings of the first (left) and third (right) iterate of the tile
[A+]°.

Figure 3.1.0-D: Area drawings of the first (left) and third (right) iterate of the digon
tile [A1]2.

A curve of order 109

-

Figure 3.1.0-E: First iterate of a curve of order 109. It starts at the bottom and ends
at the top. Line drawing (left) and area drawing (right).

The motif of a curve of order 109 with map
A |==> A+A+AVA+A+A+A! A+A+A+A A+A+A+A A+A+A+FA+FA+A T A+A+HA+A L A+A+A+A ! A+A+A+A A+A+A+ \
A+AVAHA+HA+A T A+AFA+A+FA+AV AHAHA+A A+ A+A+A+A+HA-A+A A+A-A-A+A-A+A-A+A T A+A-A+ \
A-A+A-A+AVA+A+A+A ! A+A+A+A ! A+A+A+A ! A+A+A+A ! A+A+A+A ! A-A+A-A+A-A+A-A+A-A+A-A
is shown in Figure 3.1.0-E

The CCW tile is shown in Figures 3.1.0-F and 3.1.0-G, the CW (digon) tile in
Figure 3.1.0-H.
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3.1 The hexagon grid

Figure 3.1.0-F: First iterate of the CCW prototile [A+]®. Line drawing (left) and area
drawing (right). Coloring by orientation of the curves.

Figure 3.1.0-G: Second iterate of the CCW prototile [A]®, decomposed into 109 smaller
copies of its first iterate.
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3.1 The hexagon grid

o 1]
@

Figure 3.1.0-H: Second iterate of the digon tile [A!]? (left), decomposed into 109
smaller copies of itself (first iterate) appearing in three orientations (right).

A curve of order 19

Figure 3.1.0-I: First (left) and second (right) iterates of the curve. Starts and ends
are marked. Coloring by orientation of the edges in the motif.

Figure 3.1.0-1 shows the motif and second iterate of a curve of order 19 with map
A [-=> A+A-A+A+AVA-A+A+AVA+A+A A+A+A+HA+A+A-A
The fourth iterate is shown in Figure 3.1.0-J. Now compare to Figure 2.4.1-M on page
50, the images look identical.
Indeed, take the map for the non-constant letter A for the curve of Figure 2.4.1-M,

A |--> A++A---B++++B---A++A++A-—-B-—-A---B++++B-—-A-—-B++++B++++B-—-A++ \
A---B---A-—-B++++B++++B-——A-—-B++++B++++B-——A-—-B-——A++A++A++A++ \
A++A-—-B++++B-—-A

Remove all letters B:

A |==> A++A-——++++———A++A++A-———— A-——++++———A———++++++++———A++A—————— \
A———++++++++———A———++++++++———A-————— A++A++A++A++HA++HA-——++++———A

Normalize turns:
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3.1 The hexagon grid

Figure 3.1.0-J: Fourth iterate, coloring by orientation of edges in the motive.

A |--> A++A--A++A++A-————— A--A++A++A-————— A++A++A-————— A++A++A++A++A++A--A
These turns are by 30 degrees, we want to use turns by 60 degrees:

A |==> A+A-A+A+A---A-A+A+A-—-A+A+A---A+A+A+A+A+A-A
Finally replace —-- by !, they are U-turns. This gives the map of our curve.

This is not a surprise. Reducing the edges B in the (3.4.6.4)-grid (the red ones in
Figure 2.4.1-A on page 45) to zero gives the hexagon grid with double edges.

The lozenge shaped areas in Figure 3.1.0-J are the digon tiles [A!]2.

A coloring with three edge classes

Figure 3.1.0-K: A coloring of the hexagon grid with three colors. Line drawing (left)
and area drawing (right).

We use the coloring with three colors (edge classes) shown in Figure 3.1.0-K. The
CCW tile is [A+B+C+]2, it is a lattice tile. The CW tiles are [A!]?, [B!]?, and [C!]?.

The motifs for a curve-set of order 13 with maps

A |-—> A+B+C+A+B!B+C+A-C!C+A-C+A+B-A
B |--> B+C+A+B+C!C+A+B!B-A+B+C-B
C |--> C+A+B+C+A!A+B!B+C+A-C

is shown in Figure 3.1.0-L.
The mutual self-similarity of the CW tiles is shown in Figure 3.1.0-M.
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3.2 The square grid

Figure 3.1.0-L: First iterates of the curves A (left), B (middle), and C (right). Each
curve starts at the bottom and ends at the top right as indicted.

Figure 3.1.0-M: Mutual self-similarity of the CW tiles [A!]? (left, small copies blue),
[B!]? (middle, small copies red), and [C!]? (right, small copies green).

3.2 The square grid

Figure 3.2.0-A: Grid-graph of the square grid with double edges, line drawing (left)
and area drawing (right). Coloring by the orientations of the edges.

Though not needed, we can use double edges for the square grid, see Figure 3.2.0-A.
There is just one edge class.
Here we use turns by 90 degrees (27/4).

The transitions are A+A, AOA, A-A, and A!A. The CCW prototile is [A+]?, it is a lattice
tile. The CW (digon) tile is [A!]?.

A curve of order 4

The only curve of order 4 is well-known, see [19, Section 4.5, pp.60-61] or [5, Item 5.3,
Section A.5, p.243]. We start with an empty 2 X 2 square, see Figure 3.2.0-B (left).
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3.2 The square grid

Figure 3.2.0-B: Border of the CCW tile [A+]* (left) and the tile filled with a curve of
order 4 (middle). Second iterate of the tile (right).

There is just one way to fill the square (middle). The map of the resulting curve is
A |-—> A+AVA+A

The second iterate of this tile [A+]* is shown on the right. The limiting shape of the
curve is a triangle.

Figure 3.2.0-C: The curve rendered to traverse the points of the (4.8.8)-grid.

The curve can be rendered so that it traverses the points of the (4.8.8)-grid as shown
in Figure 3.2.0-C and [18, Figure 5, p. 428]. Here is a recipe for this rendering from
our curve: in the word produced by the Lindenmayer system replace, in this order, all
+ with +F+, all A with +F-F-F+, finally all ! with --F--. For drawing the curve, use
turns by 45 degrees (27/8).

1

< <

A curve of order 5

Figure 3.2.0-D: Border of the CCW tile [A+]* (left) and the tile filled with a curve of
order 5 (right).

A curve of order 5 with map
A |-—> A+AOA!'A+A

was given in [16, lower left in Figure 2.5, p. 16]. The first iterate of its CCW tile [A+]*
is shown in Figure 3.2.0-D.

The sixth iterates of both tiles [A+]* and [A!]? are shown in Figure 3.2.0-E. Note that
the shape of the tile [A!]? is that of the curve of order 5 with map
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3.2 The square grid

Figure 3.2.0-E: Sixth iterates of the tiles [A+]* (left) and [A!]? (right).

Figure 3.2.0-F: First (left) and sixth (right) iterate of a curve of order 5 on the square
grid without double edges.

F |--> F+F+F-F-F

on the square grid without double edges, see Figure 3.2.0-F. This curve is the only
one of order 5 on the square grid with minimal coloring.

A curve of order 17

Figure 3.2.0-G: Border of the CCW tile [A+]* (left), tile filled with an order 17 curve,
line drawing (middle) and area drawing (right). First iterates.

Creating curves manually is as straightforward as for the hexagon grid, see Figure 3.2.0-
G for a curve of order 17 with map

A |--> A+A!'A+A+AOAOA!AOA+A+A+A'A+ATAOA+A
Fourth iterates of the tiles and the self-similarity of the tile [A!]? are shown in
Figure 3.2.0-H. That the small copies on the right appear in two orientations should be

no surprise, [A!]? lies along the edge pairs and those appear in horizontal and vertical
orientation.
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3.2 The square grid

%%

Figure 3.2.0-H: Fourth iterates of the tiles [A+]* (left) and [A!]? (middle). Self-similarity
of the digon tile [A!]? (right), small copies appear in two orlentatlons.

A curve of order 85

AAAAA’

1
IR
A

Py

Figure 3.2.0-I: Motif of the curve. Line drawing (left) and area drawing (right). The
curve starts at the upper left and ends at the lower right.

This curve of order 85 has the map

A [==> AAAAAA+A'AA+A'A+A+AVA+A+AV A+A+A Y A+A+A T A+AVA+A+HA T A+A+A T A+A+A Y A+A+AVA+A Y A+A+ \
AVA+A+AVA+A+AVA+AVA+A+AVA+A+A T A+A Y A+A+A Y A+A Y A+A+A+AA+AAA+AAAA+AAAAA+AAAAAA

The motif is shown in Figure 3.2.0-1.
The self-similarity of the tile [A+]* is shown in Figure 3.2.0-J.
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3.3 The triangle grid

Figure 3.2.0-J: The second iterate of the CCW prototile [A+]* (left), decomposed into
85 small copies of its first iterate (right).

3.3 The triangle grid
The triangle grid with double edges is shown in Figure 3.3.0-A. There are now six
orientations of the edges in the grid.

Turns are by 60 degrees (27/6) and all six transitions are possible, AOA, A+A, A++A,
A'A, A-A, and A—-A.

There is just one edge class. The CCW tile is [A++]3, the CW tile is the digon [A!]%.

Figure 3.3.0-A: Grid-graph of the triangle grid with double edges, line drawing (left)
and area drawing with colors indicating orientation (right).

A curve of order 4

Our first example appears (in some disguise) in [16, Figure 2.9, p. 19], where it is
attributed to [20]. The maps of the curve given are

A |-—-> AF+F+AF-F-F-AF-F+F+F-F+F+F-A
F|-—>F
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3.3 The triangle grid

A%

Figure 3.3.0-B: First iterate of a curve of order 4 (top left). First (bottom left) and
sixth (middle) iterate of its CCW tile [A++]5. Sixth iterate of the CW (dlgon) tile
[A1]? (right). Coloring by orientation of the curves.

The letters A are removed before drawing. We remove all letters F and normalize the
turns. to obtain the arguably most simple curve on this grid, see Figure 3.3.0-B.

A |--> A++A-—-A-++-++-A (drop letters F)
A |-=> A++A'A+A (normalize turns)

Ak .. b

Figure 3.3.0-C: The curve, rendered as suggested by Szilard and Quinton: self-similarity
(left) and the CCW tile (right).

Renderings as suggested by Szilard and Quinton are shown in Figure 3.3.0-C. The
curves cover all points on the hexagon grid. The axiom for the tile on the right is
[AF+F+]3.

A curve of order 3

This curve has the map
A |-—> A++A--A

which is just that of the terdragon, whose map is usually given as
F |--> F+F-F

for turns by 120 degrees (27/3).

Here we took A+A-A which has 2-fold symmetry as the tile border and notice nothing
can (or should) be filled into the interior of the first iterate of the tile [A++]®, see
Figure 3.3.0-D. Note how the area drawing on the right leaves half of the interior
empty. This is because the curve is just half of the terdragon.

The CW (digon) tile covers the area of the terdragon, see the middle of Figure 3.3.0-
E. The image on the right for the axiom A++A++A!'A--A--A has the same shape as
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3.3 The triangle grid

AA
AAAA
% AA5LA

Figure 3.3.0-D: First iterate of a curve of order 3 (top left) and its CCW tile [A++]?
(bottom left). The third iterate of the tile drawn using hnes (middle) and as area
drawing (right). Coloring by orientation of the curves.

z

EZ: % 1& AA
AAAAAA
A A

Figure 3.3.0-E: Third iterate of the CW tile [A!]? with U-turns marked by the two
disks (left) and area drawing of the same (middle). The area drawing for the axiom
A++A++AVA--A--A (right).

the tile for the terdragon (with axiom [F+], a lattice tile), compare to the right of
Figure 3.3.0-D.

Such a bisection of curves can be done for curves with 2-fold symmetry. Another
example would be the (only) curve of order 4 with map

F |--> F+FOOF-F

A curve of order 61

The map of the curve of order 61 is

A | ==> A++AVA++AVA+H+HA+HHA T A++A A++A+HHA T A++A T A++HA+HHA T A++A+HA T A++A T A++HA+HHATA+A+HHA+HA T A+ \
AVA++A++A A++A++A-—A-AOAOA ! A++A! A++A++A A++AV A++A++A ' A++A 1 A++A++A ! AOAOAOAOA

~ ‘; > > - ~ :AAAA

Figure 3.3.0-F: Motif of a curve of order 61 (left), the curve starts at the lower left
and ends at the upper right. Area drawing of the same (right).
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3.3 The triangle grid

The motif of the curve is shown in Figure 3.3.0-F, its CCW tile in Figure 3.3.0-G, and
its CW (digon) tile in Figure 3.3.0-H.

S G G

Figure 3.3.0-G: The third iterate of the CCW prototile [A++]3 (right), decomposed
into 61 copies of its second iterate (left), appearing in 2 orientations.

Figure 3.3.0-H: The third iterate of the prototile [A!]? (left), decomposed into smaller
copies of itself appearing in three orientations (right).
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3.3 The triangle grid

A coloring with two edge classes

AN ANL AN
TANPANT2ANEZ2NEZ2NTANS
ANE ANS ANL ANL AN AL

Figure 3.3.0-I: Coloring the triangle grid with double edges using two colors. Line
drawing (left) and area drawing (right).

The coloring (see Figure 3.3.0-1) is such that we have two CCW prototiles, [A++]? and
[B++]3. The color is switched over all edges, so the CW (digon) tile is [A!B]!.

We need two CCW tiles that fit together. The borders of the tiles chosen are shown
next to each other in Figure 3.3.0-J. Filling them gives the curves. The resulting
curve-set has order 13 and maps

A |-—> A++A!B++B!A++A++A!BOB+A
B |--> B++B!A++A!B++B!A++A+B++B++B!A+B!AOA+B

Figure 3.3.0-J: Borders of the CCW tiles [A++]? (blue) and [B++]® (red), drawn side
by side (left). Filling the tiles gives the curves (right).

The self-similarity of the CW (digon) tile [A!'B]! is shown in Figure 3.3.0-K. The
mutual self-similarity of the CCW tiles in Figure 3.3.0-L.
In Figure 3.3.0-E on page 75 we have split the terdragon into halves in the minimal

coloring. With the coloring here we can split any curve from the (minimally colored)
triangle grid (with no double edges) into halves.

The digon tile [A!B!]! of such a curve of order 13 with maps

A |--> AOA++AOAOA--A++A--A--AOA++A++A--A
B |--> B++B--B--BOB++B++B--B++BOBOB--BOB

is shown in Figure 3.3.0-M. We have seen half of this tile (that is, curve A) in
Figure 3.0.0-B on page 63. This is the splitting of the curve shown in Figure 1.2.0-A
on page H.

The same splitting technique works for the square grid with double edges and the
coloring into two colors giving a chessboard pattern. We’ll do the equivalent for the
trihex grid next.
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3.3 The triangle grid

Figure 3.3.0-K: Area drawing of the first iterate of the CW (digon) tile [A!B]? (left).
The third iterate (middle), decomposed into 13 copies of the second iterate, each
colored by orientation (right).

Y8

Figure 3.3.0-L: Mutual self-similarity of the CCW tiles: [A++]? (left, small copies in
blue) and [B++]? (right, small copies in red).

: N\
! : i o«
v
N N‘
v Y

Figure 3.3.0-M: First (left) and second (middle) iterate of a digon tile, colored by
letters. Second iterate decomposed into first iterates, colored by orientations (right).
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3.4 The trihexagonal grid

3.4 The trihexagonal grid

VAR /A8 VAR /A VAR /A VAR /A VAR

A
A
A

N
'

Figure 3.4.0-A: The trihex grid with double edges, line drawing (left) and area drawing
(right).

Here we use turns by 60 degrees (27/6).
The minimal coloring of the grid has two edge classes, see Figure 3.4.0-A.

The CCW prototiles are [F+]% (blue hexagons) and [G++]3 (red triangles), The CW
(digon) prototile is [F!G]'. The transitions are F+F, FOG, F--F, F!G, G++G, GOF, G-G,
A curve-set of order 13

Ay dy

Figure 3.4.0-B: From left to right: curve of order 13 on the trihex grid, its area
drawing, the digon tile [F!G]! on the grid with double edges, and its area drawing.

We start with the curve of order 13 on the trihex grid without double edges with map
F |--> F+F+F+F+F-—F+F+F--F--F+F+F--F
It is shown on the left in Figure 3.4.0-B.

For the grid with double edges we need a curve G that is the reversal of the curve F: its
map is obtained by reversing the map for F and changing all + into - and all - into +:

G |-=> G++G-G-GH++GHG-G-G++G-G-G-G-G
Now [F!G]! is already the CW (digon) tile, nothing needs to be filled in, see the two
images on the right in the figure.

Figure 3.4.0-C shows the tiling of the plane by (second iterates) of the digon tiles.
Alternatively, it shows the tiling of the plane by the curve F we started with, on the
grid without double edges.
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3.4 The trihexagonal grid

Figure 3.4.0-C: Tiling the plane by digon tiles [F!G]'. Coloring by orientation of tiles,
not distinguishing the two curves in any tile.

A curve-set of order 9 with the Koch snowflake as CCW tiles

Figure 3.4.0-D: First (left) and fourth (right) iterate of the CCW tile [F+]6 and [G++]3
drawn next to each other.

We can create a curve-set such that the CCW tile [G++]% has 6-fold symmetry. The
most simple example is the curve-set of order 9 with maps

F |--> F+F+F!G++G++G!F--F+F+F
G |-=> G++G!F+F!G++G++G-G

whose CCW tiles are shown in Figure 3.4.0-D. The shape of both tiles is that of the
Koch snowflake, even having reflection symmetry.

Another curve-set with two 6-fold symmetric tiles

The borders of the CCW tiles of a curve-set are shown in Figure 3.4.0-E. The maps
for the borders are

F [--> F+F+F+F--F--F+F+F+F--F

G |--> G++G-G-G-G++G++G-G-G-G

Again both tiles have 6-fold symmetry. They do not have the reflection symmetry like
the Koch snowflake, though. This can bee seen in Figure 3.4.0-F.
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3.5 The (4.8.8)-grid

Figure 3.4.0-E: Borders of the CCW tiles, drawn next to each other. Tile [F+]% is the
bigger one, tile [G++]® the smaller one. Line drawing (left) and area drawing (right).

Figure 3.4.0-F: Third iterates of the CCW prototiles: tile [F+]® colored blue, tile
[G++]3 colored red.

3.5 The (4.8.8)-grid
Here we use turns by 45 degrees (27/8).

Figure 3.5.0-A: The (4.8.8)-grid with double edges, line drawing (left, blue for A,
otherwise red) and area drawing (right, blue for A, red for B, green for b).

We turn all edges of the (4.8.8)-grid into double edges as shown in the left in Figure 3.5.0-
A. There are three edge classes. Letters A lie between octagons, letters b and B lie
between a square and an octagon.

All edges are assigned an area left of them. The areas for b fill the squares, the areas
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3.5 The (4.8.8)-grid

for A and B fill the octagons, see the right of Figure 3.5.0-A.

The CCW prototiles are [A+B+]* and [b++]*, CW prototiles are [A!]? and [b!B!]1. The
transitions are A+B, A!A, A-b, b++b, b-A, b!B, B+A, B--B, and B!b.

Figure 3.5.0-B: Area drawing of the grid colored by orientation of edges.

Figure 3.5.0-B shows an area drawing of the grid where the colors correspond to the
orientation of the edges.

A curve of order 5 with two constant letters

A

Figure 3.5.0-C: From left to right: motif as line and as area drawing, second and
third iterates as area drawing.

The curve has order 5 and maps

A |--> A-b++b++b++b!B+A+B--B+A! A+B+A

b |--—>b

B |[--> B
Its first, second, and third iterates are shown in Figure 3.5.0-C. The coloring used in
the area drawing is by orientation of the edges, as in Figure 3.5.0-B. Note how all but
the green and blue areas (corresponding to the letter A) vanish with higher iterates.
Tterates of the CW (digon) tile are shown in Figure 3.5.0-D. It looks suspiciously like
what is shown in Figure 3.2.0-F on page 71. Indeed, by dropping letter b and B and
normalizing turns one obtains the map

A |-=> A++AQA'A++A

This is the map for the curve of order 5 on the double-edged square grid from Section 3.2
on page 69. Not a surprise, dropping edges b and B in our grid gives the square grid
with double edges.
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3.5 The (4.8.8)-grid

1%

Figure 3.5.0-D: The CW tile [A!]2, first (left), second (middle), and fourth (right)
iterate. Coloring by the orlentatlons of the edges in the ﬁrst 1terate

A curve of order 13

Figure 3.5.0-E: Motifs for curves A (left), b (middle), and B (right).

The first iterates for a curve-set of order 13 with maps

A |--> A+B!b++b++b++b-A+B+A! A+B+A+B!b-A+B+A

b |--> b++b++b!B+A-b

B |--> B+A+B+A+B!b++b++b-A+B!b-A+B--B+A+B
are shown in Figure 3.5.0-E. Start and end points are marked. Figure 3.5.0-F shows
how the curves tile the plane.

Figure 3.5.0-F: Tiling the plane by the curves, coloring by orientation.
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3.6 The (3.12.12)-grid

3.6 The (3.12.12)-grid

Figure 3.6.0-A: The (3.12.12) grid with double edges. Line drawing with letters A
blue, b and B red (left). Area drawing with letters A blue, B red, and b green (right).

The grid is shown in Figure 3.6.0-A. There are three edge classes.

Here we use turns by 30 degrees (27/12). The prototiles are [A+B+]% and [b++++]3
(CCW), [A!])? and [b!B!]! (CW). The transitions are A+B, A-b, A!A, B+A, B----B, B!b,
b++++b, b-A, and b!B. The letters at start and end of the transitions determine the
turn uniquely, so we can omit them in the maps.

Our curve-set is of order 27 and has maps

A |--> AB!bbbAB!bbbA!ABA!ABABABA!AB!bbbABABA
B |--> BABABB!bbbABABB!bbbABB!bbbA! ABABABB!bbbABABAB
b |--> bb!BAbbb!BADb

We left out the turns except for the U-turns A'A; B!b, and b!B.

Figure 3.6.0-B: First iterates of curve A (left), B (middle), and b (right). Coloring by
axiom. Start and end of curves marked.

P e

Figure 3.6.0-C: Area drawing of the third iterates of A (left), B (middle), and b (right).
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3.6 The (3.12.12)-grid

The Motifs and third iterates are respectively shown in Figures 3.6.0-B and 3.6.0-C.

Y il

Figure 3.6.0-D: The CW (digon) tiles [A!]? (left) and [B!'b!]! (right).

The CW (digon) tiles are shown in Figure 3.6.0-D.

"~

Figure 3.6.0-E: The CCW tiles [b++++] (left) and [A+B+]S (right). Coloring by letters
in the axioms.

The CCW tiles, decomposed into curves, are shown in Figure 3.6.0-E. Note that the
CCW tile [b++++]3 has 6-fold symmetry.

Figure 3.6.0-F: The CCW tile [b++++]3, decomposed into one copy of the CCW tile
[A+B+]5 (blue and red) and six copies of itself (green).

Figures 3.6.0-F and 3.6.0-G respectively show the tiles [b++++]3 and [A+B+]%, decom-
posed into smaller copies of each other. Coloring of the small copies is just as in
Figure 3.6.0-E. The tiling of the plane by either the CCW tiles or the CW (digon)
tiles (as in Figure 3.6.0-D) can also be gleaned from Figure 3.6.0-G.
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3.6 The (3.12.12)-grid

Figure 3.6.0-G: The CCW tile [A+B+]®, decomposed into copies if itself (blue and red)
and copies of [b++++]3 (green).
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4 Curve-sets not fitting into our framework

Curve-sets as we defined them include all edge-covering families of plane-filling curves
on grids we have seen before. Still, there is more. We present examples of edge-covering
curves on grids that do not fit into our framework.

In the following we refer to the objects presented as curve-sets even though they are
not curve-sets in the sense used so far.

4.1 First example

53
53

M 2

Figure 4.1.0-A: Motif for F (top left) and H (bottom left). Second iterate for F (middle)
and H (right). Edges F are blue and edges H are red.

On the triangle grid consider the curve-set given by the maps
F |--> F+F-F-FOF+F+F-FOF
H |--> H+F-F-F+HOH

Turns are by 120 degrees (27/3), these curves live on the triangle grid. Motif and
second iterates are shown in Figure 4.1.0-A. Note that there are 12 letters F and 3
letters H in the productions, so our concept of an order of a curve-set does not apply
here. Edges H appear only on a line.

* o

Figure 4.1.0-B: Fourth iterates of the tiles [F+]3 (left) and [H+]® (right).

Note that the transitions are not as we required them for our curve-sets: in the second
iterate for H most of the transitions are F+F and F-F (from the map for F) but some
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4.2 Second example

are F-H (from the map for H). Therefore curve H does not live on a grid coloring as
the one we used.

The tile [F+]? is shown on the left in Figure 4.1.0-B (the tile [F-]? is identical, modulo
a reflection). Curve F occupies half of the plane, its tile [H+]3 is shown on the right.
The tile [H-]? has an empty triangular interior, it is obtained by reflecting the three
curves in the tile [H+]3 over their straight borders.

4.2 Second example

This is actually an infinite family of examples.

—>

Figure 4.2.0-A: Motif (left) and self-similarity (right) of a curve of order 7.

We start with a curve of order 7 on the triangle grid given by the map
F |--> F+F-F-F+F+F-F
Its motif and decomposition into 7 smaller copies of itself are shown in Figure 4.2.0-A.

Now duplicate the map for F into one for the letter G. Then, in the production, replace
the letter F by G at will. We use the maps

F |--> F+F-F-G+F+F-F
G |--> G+G-G-G+G+G-G

We have 6 letters F and 8 letters G in the production. So this curve-set does not fit
into our framework.

S5

Figure 4.2.0-B: First (top left), second (bottom left), and fifth (right) iterate of
curve F. Coloring by individual edges, blue for F and red for G.

These two curves “work” because they are of the same shape. The production of G
does not contain any letter F so the curve is exactly the thing we started with. Curve
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4.2 Second example

F looks more interesting, see Figure 4.2.0-B: the grid coloring induced by this curve
has definitely no translation symmetry.

Figure 4.2.0-C: First (top left), second (bottom left, rounded turns), and fourth (right)
iterate of curve F. There is always a nonzero turn between successive edges G (red)
but not always for F (blue).

We can do more by using for F a curve of the same shape as G (but not the identical
sequence of turns):

F |--> FOF+F+G-F-FOF (changed)

G |-—> G+G-G-G+G+G-G
Compare the motifs (top left) of Figure 4.2.0-C with that of Figure 4.2.0-B! In our

illustration we use rounded corners to make regions with many turns (red) visually
distinguishable from regions with straight lines.
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Index of terms

k-fold symmetry, 10

area drawing, 5

axiom, 4

CCW sense of rotation, 4
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curve-set, 6
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double edge, 63

edge class, 3

edge-covering, 5

folding curves, 11
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grid, 3
iterate, 4
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map, 4
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patch, 8
plane-filling, 5
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self-avoiding, 5
self-similarity, 5

substitution matrix, 7
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unique transition property, 3
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