# The 4*42=168 products of zero-divisors of the sedenions # that are sums or differences of two units. # # In an entry (A + B)*(C +- D) A, B, C, and D # are to the indices of the units (starting with index zero). # Only 2*42=84 products are given: # for each entry (A + B)*(C + D) there is another # zero-product (A - B)*(C - D), # and for each entry (A + B)*(C - D) # there is also (A - B)*(C + D). #. # Generated by Joerg Arndt, 2009-September-14 # 1: ( 1 + 10 ) * ( 4 - 15 ) 2: ( 1 + 10 ) * ( 5 + 14 ) 3: ( 1 + 10 ) * ( 6 - 13 ) 4: ( 1 + 10 ) * ( 7 + 12 ) 5: ( 1 + 11 ) * ( 4 + 14 ) 6: ( 1 + 11 ) * ( 5 + 15 ) 7: ( 1 + 11 ) * ( 6 - 12 ) 8: ( 1 + 11 ) * ( 7 - 13 ) 9: ( 1 + 12 ) * ( 2 + 15 ) 10: ( 1 + 12 ) * ( 3 - 14 ) 11: ( 1 + 12 ) * ( 6 + 11 ) 12: ( 1 + 12 ) * ( 7 - 10 ) 13: ( 1 + 13 ) * ( 2 - 14 ) 14: ( 1 + 13 ) * ( 3 - 15 ) 15: ( 1 + 13 ) * ( 6 + 10 ) 16: ( 1 + 13 ) * ( 7 + 11 ) 17: ( 1 + 14 ) * ( 2 + 13 ) 18: ( 1 + 14 ) * ( 3 + 12 ) 19: ( 1 + 14 ) * ( 4 - 11 ) 20: ( 1 + 14 ) * ( 5 - 10 ) 21: ( 1 + 15 ) * ( 2 - 12 ) 22: ( 1 + 15 ) * ( 3 + 13 ) 23: ( 1 + 15 ) * ( 4 + 10 ) 24: ( 1 + 15 ) * ( 5 - 11 ) 25: ( 2 + 9 ) * ( 4 + 15 ) 26: ( 2 + 9 ) * ( 5 - 14 ) 27: ( 2 + 9 ) * ( 6 + 13 ) 28: ( 2 + 9 ) * ( 7 - 12 ) 29: ( 2 + 11 ) * ( 4 - 13 ) 30: ( 2 + 11 ) * ( 5 + 12 ) 31: ( 2 + 11 ) * ( 6 + 15 ) 32: ( 2 + 11 ) * ( 7 - 14 ) 33: ( 2 + 12 ) * ( 3 + 13 ) 34: ( 2 + 12 ) * ( 5 - 11 ) 35: ( 2 + 12 ) * ( 7 + 9 ) 36: ( 2 + 13 ) * ( 3 - 12 ) 37: ( 2 + 13 ) * ( 4 + 11 ) 38: ( 2 + 13 ) * ( 6 - 9 ) 39: ( 2 + 14 ) * ( 3 - 15 ) 40: ( 2 + 14 ) * ( 5 + 9 ) 41: ( 2 + 14 ) * ( 7 + 11 ) 42: ( 2 + 15 ) * ( 3 + 14 ) 43: ( 2 + 15 ) * ( 4 - 9 ) 44: ( 2 + 15 ) * ( 6 - 11 ) 45: ( 3 + 9 ) * ( 4 - 14 ) 46: ( 3 + 9 ) * ( 5 - 15 ) 47: ( 3 + 9 ) * ( 6 + 12 ) 48: ( 3 + 9 ) * ( 7 + 13 ) 49: ( 3 + 10 ) * ( 4 + 13 ) 50: ( 3 + 10 ) * ( 5 - 12 ) 51: ( 3 + 10 ) * ( 6 - 15 ) 52: ( 3 + 10 ) * ( 7 + 14 ) 53: ( 3 + 12 ) * ( 5 + 10 ) 54: ( 3 + 12 ) * ( 6 - 9 ) 55: ( 3 + 13 ) * ( 4 - 10 ) 56: ( 3 + 13 ) * ( 7 - 9 ) 57: ( 3 + 14 ) * ( 4 + 9 ) 58: ( 3 + 14 ) * ( 7 - 10 ) 59: ( 3 + 15 ) * ( 5 + 9 ) 60: ( 3 + 15 ) * ( 6 + 10 ) 61: ( 4 + 9 ) * ( 6 - 11 ) 62: ( 4 + 9 ) * ( 7 + 10 ) 63: ( 4 + 10 ) * ( 5 + 11 ) 64: ( 4 + 10 ) * ( 7 - 9 ) 65: ( 4 + 11 ) * ( 5 - 10 ) 66: ( 4 + 11 ) * ( 6 + 9 ) 67: ( 4 + 13 ) * ( 6 + 15 ) 68: ( 4 + 13 ) * ( 7 - 14 ) 69: ( 4 + 14 ) * ( 5 - 15 ) 70: ( 4 + 14 ) * ( 7 + 13 ) 71: ( 4 + 15 ) * ( 5 + 14 ) 72: ( 4 + 15 ) * ( 6 - 13 ) 73: ( 5 + 9 ) * ( 6 - 10 ) 74: ( 5 + 9 ) * ( 7 - 11 ) 75: ( 5 + 10 ) * ( 6 + 9 ) 76: ( 5 + 11 ) * ( 7 + 9 ) 77: ( 5 + 12 ) * ( 6 - 15 ) 78: ( 5 + 12 ) * ( 7 + 14 ) 79: ( 5 + 14 ) * ( 7 - 12 ) 80: ( 5 + 15 ) * ( 6 + 12 ) 81: ( 6 + 10 ) * ( 7 - 11 ) 82: ( 6 + 11 ) * ( 7 + 10 ) 83: ( 6 + 12 ) * ( 7 - 13 ) 84: ( 6 + 13 ) * ( 7 + 12 ) # short form: # 1: ( 1 + 10 ) * ( 4 - 15 ), ( 5 + 14 ), ( 6 - 13 ), ( 7 + 12 ) # 5: ( 1 + 11 ) * ( 4 + 14 ), ( 5 + 15 ), ( 6 - 12 ), ( 7 - 13 ) # 9: ( 1 + 12 ) * ( 2 + 15 ), ( 3 - 14 ), ( 6 + 11 ), ( 7 - 10 ) #13: ( 1 + 13 ) * ( 2 - 14 ), ( 3 - 15 ), ( 6 + 10 ), ( 7 + 11 ) #17: ( 1 + 14 ) * ( 2 + 13 ), ( 3 + 12 ), ( 4 - 11 ), ( 5 - 10 ) #21: ( 1 + 15 ) * ( 2 - 12 ), ( 3 + 13 ), ( 4 + 10 ), ( 5 - 11 ) #25: ( 2 + 9 ) * ( 4 + 15 ), ( 5 - 14 ), ( 6 + 13 ), ( 7 - 12 ) #29: ( 2 + 11 ) * ( 4 - 13 ), ( 5 + 12 ), ( 6 + 15 ), ( 7 - 14 ) #33: ( 2 + 12 ) * ( 3 + 13 ), ( 5 - 11 ), ( 7 + 9 ) #36: ( 2 + 13 ) * ( 3 - 12 ), ( 4 + 11 ), ( 6 - 9 ) #39: ( 2 + 14 ) * ( 3 - 15 ), ( 5 + 9 ), ( 7 + 11 ) #42: ( 2 + 15 ) * ( 3 + 14 ), ( 4 - 9 ), ( 6 - 11 ) #45: ( 3 + 9 ) * ( 4 - 14 ), ( 5 - 15 ), ( 6 + 12 ), ( 7 + 13 ) #49: ( 3 + 10 ) * ( 4 + 13 ), ( 5 - 12 ), ( 6 - 15 ), ( 7 + 14 ) #53: ( 3 + 12 ) * ( 5 + 10 ), ( 6 - 9 ) #55: ( 3 + 13 ) * ( 4 - 10 ), ( 7 - 9 ) #57: ( 3 + 14 ) * ( 4 + 9 ), ( 7 - 10 ) #59: ( 3 + 15 ) * ( 5 + 9 ), ( 6 + 10 ) #61: ( 4 + 9 ) * ( 6 - 11 ), ( 7 + 10 ) #63: ( 4 + 10 ) * ( 5 + 11 ), ( 7 - 9 ) #65: ( 4 + 11 ) * ( 5 - 10 ), ( 6 + 9 ) #67: ( 4 + 13 ) * ( 6 + 15 ), ( 7 - 14 ) #69: ( 4 + 14 ) * ( 5 - 15 ), ( 7 + 13 ) #71: ( 4 + 15 ) * ( 5 + 14 ), ( 6 - 13 ) #73: ( 5 + 9 ) * ( 6 - 10 ), ( 7 - 11 ) #75: ( 5 + 10 ) * ( 6 + 9 ), ( 7 + 9 ) #77: ( 5 + 12 ) * ( 6 - 15 ), ( 7 + 14 ) #79: ( 5 + 14 ) * ( 7 - 12 ) #80: ( 5 + 15 ) * ( 6 + 12 ) #81: ( 6 + 10 ) * ( 7 - 11 ) #82: ( 6 + 11 ) * ( 7 + 10 ) #83: ( 6 + 12 ) * ( 7 - 13 ) #84: ( 6 + 13 ) * ( 7 + 12 )