// output of ./demo/comb/ksubset-twoclose-list-rec-demo.cc: // Description: //% k-subsets (kmin<=k<=kmax) in two-close order with homogeneous moves. //% Representation as list of elements. //% Recursive algorithm. arg 1: 6 == n [Subsets of n-element set.] default=6 arg 2: 2 == kmin [Minimal number of elements in subsets.] default=2 arg 3: 4 == kmax [Maximal number of elements in subsets.] default=4 arg 4: 0 == w [Whether to modify ordering (bool).] default=0 1; 1111.. { 0, 1, 2, 3 } 2; 111.1. { 0, 1, 2, 4 } 3; 111... { 0, 1, 2 } 4; 111..1 { 0, 1, 2, 5 } 5; 11..11 { 0, 1, 4, 5 } 6; 11..1. { 0, 1, 4 } 7; 11.... { 0, 1 } 8; 11...1 { 0, 1, 5 } 9; 11.1.. { 0, 1, 3 } 10; 11.1.1 { 0, 1, 3, 5 } 11; 11.11. { 0, 1, 3, 4 } 12; 1.111. { 0, 2, 3, 4 } 13; 1.11.. { 0, 2, 3 } 14; 1.11.1 { 0, 2, 3, 5 } 15; 1.1.11 { 0, 2, 4, 5 } 16; 1.1.1. { 0, 2, 4 } 17; 1.1... { 0, 2 } 18; 1.1..1 { 0, 2, 5 } 19; 1...11 { 0, 4, 5 } 20; 1...1. { 0, 4 } 21; 1....1 { 0, 5 } 22; 1..1.. { 0, 3 } 23; 1..1.1 { 0, 3, 5 } 24; 1..11. { 0, 3, 4 } 25; 1..111 { 0, 3, 4, 5 } 26; ..1111 { 2, 3, 4, 5 } 27; ..111. { 2, 3, 4 } 28; ..11.. { 2, 3 } 29; ..11.1 { 2, 3, 5 } 30; ..1.11 { 2, 4, 5 } 31; ..1.1. { 2, 4 } 32; ..1..1 { 2, 5 } 33; ....11 { 4, 5 } 34; ...1.1 { 3, 5 } 35; ...11. { 3, 4 } 36; ...111 { 3, 4, 5 } 37; .1..11 { 1, 4, 5 } 38; .1..1. { 1, 4 } 39; .1...1 { 1, 5 } 40; .1.1.. { 1, 3 } 41; .1.1.1 { 1, 3, 5 } 42; .1.11. { 1, 3, 4 } 43; .1.111 { 1, 3, 4, 5 } 44; .11.11 { 1, 2, 4, 5 } 45; .11.1. { 1, 2, 4 } 46; .11... { 1, 2 } 47; .11..1 { 1, 2, 5 } 48; .111.. { 1, 2, 3 } 49; .111.1 { 1, 2, 3, 5 } 50; .1111. { 1, 2, 3, 4 } ct=50