# # Number of irreducible normal degree-n polynomials over GF(2): # A line # n: N p1^e1.p2^e2. ... # says there are N normal polynomials of degree n, # the third column gives the factorization of N. #. # Generated by Joerg Arndt, 2003-December-23 # 1: 1 1 2: 1 1 3: 1 1 4: 2 2 5: 3 3 6: 4 2^2 7: 7 7 8: 16 2^4 9: 21 3.7 10: 48 2^4.3 11: 93 3.31 12: 128 2^7 13: 315 3^2.5.7 14: 448 2^6.7 15: 675 3^3.5^2 16: 2048 2^11 17: 3825 3^2.5^2.17 18: 5376 2^8.3.7 19: 13797 3^3.7.73 20: 24576 2^13.3 21: 27783 3^4.7^3 22: 95232 2^10.3.31 23: 182183 23.89^2 24: 262144 2^18 25: 629145 3^2.5.11.31.41 26: 1290240 2^12.3^2.5.7 27: 1835001 3^3.7^2.19.73 28: 3670016 2^19.7 29: 9256395 3.5.43.113.127 30: 11059200 2^14.3^3.5^2 31: 28629151 31^5 32: 67108864 2^26 33: 97327197 3^3.11^2.31^3 34: 250675200 2^16.3^2.5^2.17 35: 352149525 3^5.5^2.7^3.13^2 36: 704643072 2^25.3.7 37: 1857283155 3^3.5.7.13.19.73.109 38: 3616800768 2^18.3^3.7.73 39: 5282242875 3^6.5^3.7^3.13^2 40: 12884901888 2^32.3 41: 26817305625 3^2.5^4.11^2.31^2.41 42: 29132587008 2^20.3^4.7^3 43: 102261424509 3^3.43^2.127^3 44: 199715979264 2^31.3.31 45: 237700929375 3^8.5^4.7^3.13^2 46: 764130885632 2^22.23.89^2 47: 1497206965967 47.178481^2 48: 2199023255552 2^41 49: 4398042316801 7^4.127^2.337^2 50: 10555301560320 2^24.3^2.5.11.31.41 51: 16173058640625 3^6.5^6.17^5 52: 43293270343680 2^37.3^2.5.7 53: 84973577874915 3.5.157.1613.2731.8191 54: 123144832548864 2^26.3^3.7^2.19.73 55: 306763159044375 3^4.5^4.11^2.31^3.41^2 56: 492581209243648 2^46.7 57: 948115386938853 3^9.7^3.19^2.73^3 58: 2484744612741120 2^28.3.5.43.113.127 59: 4885260612740877 3.233.1103.2089.3033169 60: 5937362789990400 2^43.3^3.5^2 61: 18900352534538475 3^2.5^2.7.11.13.31.41.151.331.1321 62: 30740316814311424 2^30.31^5 63: 36478899699325587 3^17.7^10 64: 144115188075855872 2^57 65: 265734188480840625 3^11.5^5.7^5.13^4 66: 418017128126349312 2^32.3^3.11^2.31^3 67: 1101298153654301589 3^2.7.23.89.683.20857.599479 68: 2153283571836518400 2^49.3^2.5^2.17 69: 3204995701868251047 3^2.23^3.89^4.683^2 70: 6049882772707737600 2^34.3^5.5^2.7^3.13^2 71: 16628050995051997559 31^2.71.127^2.122921^2 72: 24211351596743786496 2^60.3.7 73: 63686054030288904697 7^8.73^7 74: 127631526562187182080 2^36.3^3.5.7.13.19.73.109 75: 155643957820139765625 3^6.5^7.11^3.31^3.41^3 76: 497089312470645866496 2^55.3^3.7.73 77: 750551898101045527179 3^5.7^3.11^2.31^3.151^2.331^2 78: 1451971865449857024000 2^38.3^6.5^3.7^3.13^2 79: 3825714619019718760111 7^2.79.8191^2.121369^2 80: 7083549724304467820544 2^71.3 81: 11018813093099316095661 3^6.7^3.19^2.73^2.87211.262657 82: 29485939360310231040000 2^40.3^2.5^4.11^2.31^2.41 83: 58261485282632731311141 3.13367.164511353.8831418697 84: 64063236324984059068416 2^61.3^4.7^3 85: 205151235916152919921875 3^11.5^10.17^9 86: 449750501282332526247936 2^42.3^3.43^2.127^3 87: 666993548195216740924875 3^3.5^3.29^2.43^3.113^3.127^3 88: 1756720331627508019494912 2^74.3.31 89: 3463799415962753191708649 23^8.89^7 90: 4181678972495588229120000 2^44.3^8.5^4.7^3.13^2 91: 10397574249976499743828125 3^14.5^7.7^8.13^6 92: 26885465404645017936461824 2^67.23.89^2 93: 32814234052783370493358239 3^6.11^6.31^11 94: 105356573969148313849561088 2^46.47.178481^2 95: 195463471086768749316972975 3^10.5^2.7^3.13^2.19^2.37^2.73^3.109^2 96: 309485009821345068724781056 2^88 97: 816785180559420357150417825 3^4.5^2.7^2.13^2.17^2.97.241^2.257^2.673^2 98: 1237938858694041032464531456 2^48.7^4.127^2.337^2 99: 2356422982103367223539335073 3^8.7^3.11^4.31^5.151^2.331^2 100: 5942106521730045875941539840 2^73.3^2.5.11.31.41 101: 12550996041863657440561417875 3.5^3.11.31.41.251.601.1801.4051.8101.268501 102: 18209245216839982645248000000 2^50.3^6.5^6.17^5 103: 49229149523426340799875586903 7^2.103.2143^2.11119^2.131071^2 104: 97487778093723696648306032640 2^88.3^2.5.7 105: 88431368996050130321258203125 3^19.5^8.7^9.13^6 106: 382686973653805017365049507840 2^52.3.5.157.1613.2731.8191 107: 758220919762679268184943973309 3.6361.69431.20394401.28059810762433 108: 1109190043959332075107503833088 2^79.3^3.7^2.19.73 109: 2977234437103299333346360030875 3^9.5^3.7^3.13^3.19^3.37^3.73^3.109^2 110: 5526153795052973799285719040000 2^54.3^4.5^4.11^2.31^3.41^2 111: 8770771720115125063101439009875 3^9.5^3.7^3.13^3.19^3.37^2.73^3.109^3 112: 17747108403195211620953844875264 2^101.7 113: 45949529036845801818936215060625 3^4.5^4.29^4.43^4.113^3.127^4 114: 68318913653152832016114052497408 2^56.3^9.7^3.19^2.73^3 115: 169148722632827095983079582881525 3^3.5^2.23^3.89^4.397^2.683^2.2113^2 116: 358089437185656173427339967856640 2^85.3.5.43.113.127 117: 523071547611636520850242271484375 3^19.5^9.7^10.13^8 118: 1408080504009444775733179069759488 2^58.3.233.1103.2089.3033169 119: 2121333545554022542681348610484375 3^10.5^6.7^5.13^4.17^5.241^4 120: 3422656620616219384041098654515200 2^102.3^3.5^2 121: 10974627450994067487575821786760649 3^2.11.23.31^2.89.683.881.2971.3191.201961.48912491 122: 21790622881719932323785009109401600 2^60.3^2.5^2.7.11.13.31.41.151.331.1321 123: 32420009509742643116175705322265625 3^6.5^12.11^6.31^6.41^5 124: 70882344627294167965017074353307648 2^91.31^5 125: 159507207376117877360928667629130875 3^3.5^3.11^2.31^2.41^2.101.251.601.1801.4051.8101.268501 126: 168229231710994854080263558841499648 2^62.3^17.7^10 127: 581652040856250348581103942808504447 127^17 128: 1329227995784915872903807060280344576 2^120 129: 1977299359668338532910575633064919421 3^9.43^8.127^9 130: 4901930566540963796139394675507200000 2^64.3^11.5^5.7^5.13^4