# # Primitive polynomials x^k + (1+x)^n over GF(2) for n<=400 # # An entry n,k,0 means x^k + (1+x)^n is primitive. # All entries n,*,* correspond to polynomials of degree n, i.e. 0 6,1,0 #> 6,5,0 #> 18,7,0 #> 18,11,0 #> 20,3,0 #> 20,17,0 #> 21,2,0 #> 21,19,0 #> 36,11,0 #> 36,25,0 #> 60,1,0 #> 60,11,0 #> 60,49,0 #> 60,59,0 #> 63,1,0 #> 63,5,0 #> 63,31,0 #> 63,32,0 #> 63,58,0 #> 63,62,0 #> 84,13,0 #> 84,71,0 #> 100,37,0 #> 100,63,0 #> 105,16,0 #> 105,17,0 #> 105,37,0 #> 105,43,0 #> 105,52,0 #> 105,53,0 #> 105,62,0 #> 105,68,0 #> 105,88,0 #> 105,89,0 #> 108,31,0 #> 108,77,0 #> 132,29,0 #> 132,103,0 #> 140,29,0 #> 140,111,0 #> 150,53,0 #> 150,97,0 #> 174,13,0 #> 174,161,0 #> 198,65,0 #> 198,133,0 #> 231,26,0 #> 231,34,0 #> 231,197,0 #> 231,205,0 #> 234,31,0 #> 234,103,0 #> 234,131,0 #> 234,203,0 #> 252,67,0 #> 252,185,0 #> 258,83,0 #> 258,175,0 #> 270,53,0 #> 270,133,0 #> 270,137,0 #> 270,217,0 #> 273,23,0 #> 273,53,0 #> 273,67,0 #> 273,88,0 #> 273,92,0 #> 273,110,0 #> 273,113,0 #> 273,160,0 #> 273,163,0 #> 273,181,0 #> 273,185,0 #> 273,206,0 #> 273,220,0 #> 273,250,0 #> 282,35,0 #> 282,43,0 #> 282,239,0 #> 282,247,0 #> 294,61,0 #> 294,233,0 #> 300,7,0 #> 300,73,0 #> 300,91,0 #> 300,209,0 #> 300,227,0 #> 300,293,0 #> 342,125,0 #> 342,217,0 #> 366,29,0 #> 366,337,0 #> 378,43,0 #> 378,107,0 #> 378,271,0 #> 378,335,0 #> 380,47,0 #> 380,333,0 #> 390,89,0 #> 390,301,0 #> 396,25,0 #> 396,109,0 #> 396,169,0 #> 396,175,0 #> 396,221,0 #> 396,227,0 #> 396,287,0 #> 396,371,0 #> 399,86,0 #> 399,109,0 #> 399,181,0 #> 399,218,0 #> 399,290,0 #> 399,313,0