
How to compute π to 1012 digits

A crash course in high precision arithmetics

Part I: Fast multiplication

Part II: Iteration schemes, the AGM, binary splitting

Jörg Arndt <arndt@jjj.de>

”Why make things difficult, when it is possible to make them cryptic
and totally illogic, with just a little bit more effort?”

– Aksel Peter Jørgensen

1

Multiplication is convolution

Multiplication of two numbers is essentially a convolution of the sequences
of their digits. The convolution of the two sequences ak, bk, k = 0 . . . N − 1
is defined as the sequence c where

ck :=
∑

i+j=k

aibj k = 0 . . . 2N − 2 (1)

A (n-digit) number written in radix R as

an−1 an−2 . . . a2 a1 a0 (2)

denotes a quantity of

n−1∑
i=0

ai ·Ri = an−1 ·Rn−1 + an−2 ·Rn−2 + . . . + a1 ·R + a0 (3)

For example, with decimal numbers one has R = 10, and the number 578
equals 5 · 102 + 7 · 101 + 8 · 100.

The product of two numbers is almost the polynomial product

2N−2∑
k=0

ck Rk :=
N−1∑
i=0

ai R
i ·

N−1∑
j=0

bj Rj (4)

The ck are found by comparing coefficients: they must satisfy the convo-
lution equation 1.

As the ck can be greater than ‘nine’ (that is, R − 1), the result has to
be ‘fixed’ using carry operations: Go from right to left, replace ck by
c′k = ck mod R and add (ck − c′k)/R to its left neighbor.

2

Multiplication is convolution [cont.]

An example: usually one would multiply the numbers 82 and 34 as follows:

82 × 34

3 32 8
2 24 6

= 2 7 8 8

We have seen that the carries can be delayed to the end of the computation:

82 × 34

32 8
24 6

24 38 8

= 2 2 7 3 8 8

. . . which is really polynomial multiplication (which in turn is a convolution
of the coefficients):

(8 x + 2) × (3 x + 4)

32 x 8
24 x2 6 x

= 24 x2 +38 x +8

The value of the polynomial 24 x2 + 38 x + 8 for x = 10 is 2788.

3

2-way splitting (Karatsuba multiplication)

Split the numbers A and B (assumed to have approximately the same
length) into two pieces

A = x A1 + A0 (1)

B = x B1 + B0

where x is a power of the radix (for decimal numbers the radix is 10) close
to the half length of A and B. The usual multiplication scheme needs 4
multiplications with half precision for one multiplication with full precision:

A B = A0 ·B0 + x (A0 ·B1 + B0 · A1) + x2 A1 ·B1 (2)

Only the multiplications Ai ·Bj need to be considered. The multiplications
by x, a power of the radix are only shifts. If we use the relation

A B = (1 + x) A0 ·B0 + x (A1 − A0) · (B0 −B1) + (x + x2) A1 ·B1 (3)

we need 3 multiplications with half precision for one multiplication with full
precision. Applying the scheme recursively until the numbers to multiply
are of machine size we obtain an algorithm whose asymptotic cost is ∼
N log2(3) ≈ N 1.585.

For squaring use

A2 = (1 + x) A2
0 − x (A1 − A0)

2 + (x + x2) A2
1 (4)

We compute 82312 = 67749361:

8231^2 ==

== (100*82+31)^2

== (1+100)*31^2 - 100*(82-31)^2 + (100+100^2)*82^2

== (1+100)*[961] - 100*[2601] + (100+100^2)*[6724]

== 961 + 96100 - 260100 + 672400 + 67240000

== 67749361

And, yes, the scheme also works for polynomials.

4

3-way splitting (Toom-Cook multiplication)

The 3-way multiplication scheme of Bodrato and Zanoni:

A = a2*x^2 + a1*x + a0

B = b2*x^2 + b1*x + b0

S0 = a0 * b0

S1 = (a2+a1+a0) * (b2+b1+b0)

S2 = (4*a2+2*a1+a0) * (4*b2+2*b1+b0)

S3 = (a2-a1+a0) * (b2-b1+b0)

S4 = a2 * b2

S2 = (S2 - S3)/3 \\ division by 3

S3 = (S1 - S3)/2

S1 = S1 - S0

S2 = (S2 - S1)/2

S1 = S1 - S3 - S4

S2 = S2 - 2*S4

S3 = S3 - S2

P = S4*x^4+ S2*x^3+ S1*x^2+ S3*x + S0

P - A*B \\ == zero

5

4-way splitting multiplication
The 4-way multiplication scheme of Bodrato and Zanoni:

A = a3*x^3 + a2*x^2 + a1*x + a0
B = b3*x^3 + b2*x^2 + b1*x + b0

S1 = a3*b3
S2 = (8*a3+4*a2+2*a1+a0)*(8*b3+4*b2+2*b1+b0)
S3 = (+a3+a2+a1+a0)*(+b3+b2+b1+b0)
S4 = (-a3+a2-a1+a0)*(-b3+b2-b1+b0)
S5 = (+8*a0+4*a1+2*a2+a3)*(+8*b0+4*b1+2*b2+b3);
S6 = (-8*a0+4*a1-2*a2+a3)*(-8*b0+4*b1-2*b2+b3)
S7 = a0*b0

S2 += S5
S4 -= S3
S6 -= S5
S4 /= 2 \\
S5 -= S1
S5 -= (64*S7)
S3 += S4
S5 *= 2; S5 += S6

S2 -= (65*S3)
S3 -= S1
S3 -= S7
S4 = -S4 \\
S6 = -S6 \\
S2 += (45*S3)
S5 -= (8*S3)
S5 /= 24 \\ division by 24

S6 -= S2
S2 -= (16*S4)
S2 /= 18 \\ division by 18
S3 -= S5
S4 -= S2
S6 += (30*S2)
S6 /= 60 \\ division by 60
S2 -= S6

P = S1*x^6 + S2*x^5 + S3*x^4 + S4*x^3 + S5*x^2 + S6*x + S7;

P - A*B \\ == zero

6

FFT-multiplication
Convolution can be done efficiently using the Fast Fourier Transform
(FFT): Convolution is a simple (element-wise) multiplication in Fourier
space. The FFT itself takes ∼ N · log N operations. Instead of the direct
convolution (∼ N 2) one proceeds as follows:

• Compute the FFTs of both factors.

• Multiply the transformed sequences element-wise.

• Compute inverse transform of the product.

Note that (1) the multiplication of two polynomials can be achieved by the
(more complicated) scheme:

• evaluate both polynomials at sufficiently many points

• element-wise multiply the values found

• find the polynomial corresponding to those (product-)values

and (2) that the FFT is an algorithm for the parallel evaluation of a given
polynomial at many points, namely the roots of unity. (3) the inverse FFT
is an algorithm to find (the coefficients of) a polynomial whose values are
given at the roots of unity.

Re-launching our example (82 ·34 = 2788), we use the fourth roots of unity
±1 and ±i:

a = (8 x + 2) × b = (3 x + 4) c = a b

+1 +10 +7 +70
+i +8i + 2 +3i + 4 +38i− 16
−1 −6 +1 −6
−i −8i + 2 −3i + 4 −38i− 16

c = (24 x2 + 38 x + 8)

This table has to be read as follows: first the given polynomials a and b are evaluated at
the points given in the left column, thereby the columns below a and b are filled. Then
the values are multiplied to fill the column below c, giving the values of c at the points.
Finally, the actual polynomial c is found from those values, resulting in the lower right
entry.

7

The radix-2 DIF FFT algorithm
Splitting of the Fourier sum into a left and right half leads to the decimation
in frequency (DIF) FFT algorithm.
For even values of n the k-th element of the Fourier transform is

F
[
a

]
k

=
n−1∑
x=0

ax zx k =

n/2−1∑
x=0

ax zx k +
n∑

x=n/2

ax zx k (1a)

=

n/2−1∑
x=0

ax zx k +

n/2−1∑
x=0

ax+n/2 z(x+n/2) k (1b)

=

n/2−1∑
x=0

(a(left)
x + zk n/2 a(right)

x) zx k (1c)

where z = eσ i 2 π/n, σ = ±1 is the sign of the transform and k ∈
{0, 1, . . . , n− 1}.
Here one has to distinguish the cases k even or odd, therefore we rewrite
k ∈ {0, 1, 2, . . . , n − 1} as k = 2 j + δ where j ∈ {0, 2, . . . , n

2 − 1} and
δ ∈ {0, 1}:

n−1∑
x=0

ax zx (2 j+δ) =

n/2−1∑
x=0

(a(left)
x + z(2 j+δ) n/2 a(right)

x) zx (2 j+δ) (2a)

=



n/2−1∑
x=0

(a(left)
x + a(right)

x) z2 x j for δ = 0

n/2−1∑
x=0

zx(a(left)
x − a(right)

x) z2 x j for δ = 1

(2b)

z(2 j+δ) n/2 = e±π i δ is equal to plus or minus one for δ = 0 or δ = 1 corre-
sponding to k even or odd. The last two equations are, more compactly
written, the key to the radix-2 DIF FFT step:

F
[
a

](even) n/2
= F

[
a(left) + a(right)] (3a)

F
[
a

](odd) n/2
= F

[
S1/2

(
a(left) − a(right)

)]
(3b)

8

The radix-2 DIT FFT algorithm
The following observation is the key to the (radix-2) decimation in time
(DIT) FFT algorithm:
For n even the k-th element of the Fourier transform is

F
[
a

]
k

=
n−1∑
x=0

ax zx k =

n/2−1∑
x=0

a2 x z2 x k +

n/2−1∑
x=0

a2 x+1 z(2 x+1) k (1a)

=

n/2−1∑
x=0

a2 x z2 x k + zk

n/2−1∑
x=0

a2 x+1 z2 x k (1b)

where z = eσ i 2 π/n, σ = ±1 is the sign of the transform and k ∈
{0, 1, . . . , n− 1}.
The identity tells us how to compute the k-th element of the length-n
Fourier transform from the length-n/2 Fourier transforms of the even and
odd indexed subsequences.

To actually rewrite the length-n FT in terms of length-n/2 FTs one has to
distinguish the cases 0 ≤ k < n/2 and n/2 ≤ k < n. In the expressions we
rewrite k ∈ {0, 1, 2, . . . , n− 1} as k = j + δ n

2 where j ∈ {0, 1, . . . , n/2− 1}
and δ ∈ {0, 1}.

n−1∑
x=0

ax zx (j+δ n
2) =

n/2−1∑
x=0

a(even)
x z2 x (j+δ n

2) + zj+δ n
2

n/2−1∑
x=0

a(odd)
x z2 x (j+δ n

2) (2a)

=



n/2−1∑
x=0

a(even)
x z2 x j + zj

n/2−1∑
x=0

a(odd)
x z2 x j for δ = 0

n/2−1∑
x=0

a(even)
x z2 x j − zj

n/2−1∑
x=0

a(odd)
x z2 x j for δ = 1

(2b)

Observing that z2 is just the root of unity that appears in a length-n/2
transform one can rewrite the last two equations to obtain the radix-2 DIT
FFT step:

F
[
a

](left) n/2
= F

[
a(even)] + S1/2F

[
a(odd)] (3a)

F
[
a

](right) n/2
= F

[
a(even)]− S1/2F

[
a(odd)] (3b)

9

Radix-4 FFT algorithms
The radix-2 DIF step in the new notation:

F
[
a

](0%2) n/2
= F

[
S0/2

(
a(0/2) + a(1/2)

)]
F

[
a

](1%2) n/2
= F

[
S1/2

(
a(0/2) − a(1/2)

)]
The radix-4 DIF FFT step, applicable for n divisible by 4, is

F
[
a

](0%4) n/4
= F

[
S0/4

(
a(0/4) + a(1/4) + a(2/4) + a(3/4)

)]
F

[
a

](1%4) n/4
= F

[
S1/4

(
a(0/4) + i σ a(1/4) − a(2/4) − i σ a(3/4)

)]
F

[
a

](2%4) n/4
= F

[
S2/4

(
a(0/4) − a(1/4) + a(2/4) − a(3/4)

)]
F

[
a

](3%4) n/4
= F

[
S3/4

(
a(0/4) − i σ a(1/4) − a(2/4) + i σ a(3/4)

)]
The radix-2 DIT step in the new notation:

F
[
a

](0/2) n/2
= S0/2F

[
a(0%2)] + S1/2F

[
a(1%2)]

F
[
a

](1/2) n/2
= S0/2F

[
a(0%2)]− S1/2F

[
a(1%2)]

Note that S0/2 = S0 is the identity operator.

The radix-4 DIT FFT step:

F
[
a

](0/4) n/4
= +S0/4F

[
a(0%4)] + S1/4F

[
a(1%4)] + S2/4F

[
a(2%4)] + S3/4F

[
a(3%4)]

F
[
a

](1/4) n/4
= +S0/4F

[
a(0%4)] + iσS1/4F

[
a(1%4)]− S2/4F

[
a(2%4)]− iσS3/4F

[
a(3%4)]

F
[
a

](2/4) n/4
= +S0/4F

[
a(0%4)]− S1/4F

[
a(1%4)] + S2/4F

[
a(2%4)]− S3/4F

[
a(3%4)]

F
[
a

](3/4) n/4
= +S0/4F

[
a(0%4)]− iσS1/4F

[
a(1%4)]− S2/4F

[
a(2%4)] + iσS3/4F

[
a(3%4)]

In contrast to the radix-2 step that happens to be identical for forward and
backward transform the sign of the transform σ = ±1 appears here.

10

Split radix FFT algorithms
The idea underlying the split radix FFT is to use both radix-2 and radix-4
decompositions at the same time.

From the radix-2 (DIF) decomposition we use the first, the one for the
even indices. For the odd indices we use the radix-4 splitting: The radix-4
decimation in frequency (DIF) step for the split radix FFT:

F
[
a

](0%2) n/2
= F

[(
a(0/2) + a(1/2)

)]
F

[
a

](1%4) n/4
= F

[
S1/4

((
a(0/4) − a(2/4)

)
+ i σ

(
a(1/4) − a(3/4)

))]
F

[
a

](3%4) n/4
= F

[
S3/4

((
a(0/4) − a(2/4)

)
− i σ

(
a(1/4) − a(3/4)

))]
Now we have expressed the length-N = 2n FFT as one length-N/2 and
two length-N/4 FFTs.

The operation count of the split radix FFT is actually lower than that of
the radix-4 FFT.

Using the introduced notation it is almost trivial to write down the DIT
version of the algorithm: The radix-4 decimation in time (DIT) step for
the split radix FFT:

F
[
a

](0/2) n/2
=

(
F

[
a(0%2)] + S1/2F

[
a(1%2)])

F
[
a

](1/4) n/4
=

(
F

[
a(0%4)]− S2/4F

[
a(2%4)]) + iσS1/4

(
F

[
a(1%4)]− S2/4F

[
a(3%4)])

F
[
a

](3/4) n/4
=

(
F

[
a(0%4)]− S2/4F

[
a(2%4)])− iσS1/4

(
F

[
a(1%4)]− S2/4F

[
a(3%4)])

11

Cyclic vs. linear convolution
The cyclic convolution (or circular convolution) of two length-n sequences
A = [a0, a1, . . . , an−1] and B = [b0, b1, . . . , bn−1] is defined as the length-n
sequence C with elements Cτ as:

C = A ~ B (1a)

Cτ :=
∑

x+y≡τ (mod n)

ax by (1b)

The last equation may be rewritten as

Cτ :=
n−1∑
x=0

ax b(τ−x) mod n (2)

That is, indices τ − x wrap around, it is a cyclic convolution.

The FFT scheme

A ~ B = F−1[F[
A

]
F

[
B

]]
(3)

computes the cyclic convolution (the polynomial product is computed mod-
ulo zn).

But we want the linear convolution:

Cτ :=
n−1∑
x=0

ax b(τ−x) mod nothing (4)

Solution: We (roughly) double the length of the input sequences by ap-
pending zeros to the end. The polynomial product is computed modulo
z2n, but 2n > deg AB.

12

Radix and precision with FFT multiplication
Restrictions are due to the fact that the components of the convolution
must be representable as integer numbers with the data type used for the
FFTs: The cumulative sums have to be represented precisely enough to
distinguish every (integer) quantity from the next bigger (or smaller) value.
The highest possible value for a will appear in the middle of the product
and when multiplicand and multiplier consist of ‘nines’ (that is R−1) only.
For radix R and a precision of N LIMBs Let the maximal possible value be
C, then

C = N (R− 1)2 (1)

The number of bits to represent C exactly is the integer greater or equal
to

log2(N (R− 1)2) = log2 N + 2 log2(R− 1) (2)

Due to numerical errors there must be a few more bits for safety. If com-
putations are made using double-precision floating point numbers (C-type
double) one typically has a mantissa of 53 bits. then we need to have

M ≥ log2 N + 2 log2(R− 1) + S (3)

where M :=mantissa-bits and S :=safety-bits. Using log2(R−1) < log2(R):

Nmax(R) = 2M−S−2 log2(R) (4)

Radix R max # LIMBs max # hex digits max # bits

210 = 1024 1048, 576 k 2621, 440 k 10240 M
211 = 2048 262, 144 k 720, 896 k 2816 M
212 = 4096 65, 536 k 196, 608 k 768 M
213 = 8192 16384 k 53, 248 k 208 M
214 = 16384 4096 k 14, 336 k 56 M
215 = 32768 1024 k 3840 k 15 M
216 = 65536 256 k 1024 k 4 M

For decimal numbers:

Radix R max # LIMBs max # digits max # bits

102 110 G 220 G 730 G
103 1100 M 3300 M 11 G
104 11 M 44 M 146 M

105 110 k 550 k 1826 k
106 1 k 6, 597 22 k
107 11 77 255

Do the sum of digits test!

13

Number theoretic transforms (NTTs)
How to make a number theoretic transform out of your FFT:
‘Replace exp(± 2 π i/n) by a primitive n-th root of unity, done.’

We want to implement FFTs in Z/mZ (the ring of integers modulo some
integer m) instead of C, the (field of the) complex numbers. These FFTs
are called number theoretic transforms (NTTs), mod m FFTs or (if m is a
prime) prime modulus transforms.

There is a restriction for the choice of m: For a length n NTT we need a
primitive n-th root of unity. A number r is called an n-th root of unity if
rn = 1. It is called a primitive n-th root if rk 6= 1 ∀ k < n.

In C matters are simple: e± 2 π i/n is a primitive n-th root of unity for
arbitrary n. e2 π i/21 is a 21-th root of unity. r = e2 π i/3 is also 21-th root of
unity but not a primitive root, because r3 = 1. A primitive n-th root of 1
in Z/mZ is also called an element of order n. The ‘cyclic’ property of the
elements r of order n lies in the heart of all FFT algorithms: rn+k = rk.

In Z/mZ things are not that simple: for a given modulus m primitive n-th
roots of unity do not exist for arbitrary n. They exist for some maximal
order R only. Roots of unity of an order different from R are available only
for the divisors di of R: rR/di is a di-th root of unity because (rR/di)di =
rR = 1.

Therefore n must divide R, the first condition for NTTs:

n\R ⇐⇒ ∃ n
√

1 (1)

The operations needed in FFTs are addition, subtraction and multiplica-
tion. Division is not needed, except for division by n for the final normal-
ization after transform and back-transform. Division by n is multiplication
by the inverse of n. Hence n must be invertible in Z/mZ: n must be co-
prime to m (i.e. gcd(n, m) = 1), the second condition for NTTs:

n ⊥ m ⇐⇒ ∃n−1 in Z/mZ (2)

14

Prime modulus
If the modulus is a prime p then Z/pZ is the field Fp = GF (p): All elements
except 0 have inverses and ‘division is possible’ in Z/pZ. Thereby the
second condition is trivially fulfilled for all FFT lengths n < p: a prime p
is coprime to all integers n < p.

Roots of unity are available for the maximal order R = p − 1 and its
divisors: Therefore the first condition on n for a length-n mod p FFT
being possible is that n divides p − 1. This restricts the choice for p to
primes of the form p = v n+1: For length-n = 2k FFTs one will use primes
like p = 3 ·5 ·227 +1 (31 bits), p = 13 ·228 +1 (32 bits), p = 3 ·29 ·256 +1 (63
bits) or p = 27 ·259 +1 (64 bits). Primes of that form are not ‘exceptional’.
The elements of maximal order in Z/pZ are called primitive elements ,
generators or primitive roots modulo p. If r is a generator, then every
element in Fp different from 0 is equal to some power re (1 ≤ e < p) of r
and its order is R/e. To test whether r is a primitive n-th root of unity
in Fp one does not need to check rk 6= 1 for all k < n. It suffices to do
the check for exponents k that are prime factors of n. This is because the
order of any element divides the maximal order.

To find a primitive root in Fp proceed as indicated by the following pseudo
code:

function primroot(p)
{

if p==2 then return 1

f[] := distinct_prime_factors(p-1)

for r:=2 to p-1
{

x := TRUE

foreach q in f[]
{

if r**((p-1)/q)==1 then x:=FALSE
}

if x==TRUE then return r
}

error("no primitive root found") // p cannot be prime !
}

The algorithm is a simple search and might seem ineffective. In practice
the root is found after only several tries.

An element of order n in Fp is returned by this function:

function element_of_order(n,p)
{

R := p-1 // maxorder
if (R/n)*n != R then error("order n must divide maxorder p-1")
r := primroot(p)
x := r**(R/n)
return x

}

15

Division: Inversion
The ordinary division algorithm is far too expensive for numbers of extreme
precision. Instead one replaces the division a

d by the multiplication of a
with the inverse of d. The inverse of d is computed by finding a starting
approximation x0 ≈ 1

d and then iterating

xk+1 = xk + xk (1− d xk) (1)

until the desired precision is reached. The convergence is quadratic (second
order), which means that the number of correct digits is doubled with each
step: if xk = 1

d(1 + e) then xk+1 = 1
d

(
1− e2

)
.

Moreover, each only requires computations with twice the number of digits
that were correct at its beginning. Still better: the multiplication xk(. . .)
needs only to be done with half of the current precision as it computes the
correcting digits (which alter only the less significant half of the digits).
Thus, at each step we have 1.5 multiplications of the current precision.
The total work1 amounts to 1.5 ·

∑N
n=0

1
2n which is less than 3 full precision

multiplications. Together with the final multiplication a division costs as
much as 4 multiplications. Another nice feature of the algorithm is that
it is self-correcting. The following numerical example shows the first two
steps of the computation of an inverse starting from a two-digit initial
approximation:

d := 3.1415926 (2)

x0 = 0.31 initial 2 digit approximation for 1/d (3)

d · x0 = 3.141 · 0.3100 = 0.9737 (4)

y0 := 1.000− d · x0 = 0.02629 (5)

x0 · y0 = 0.3100 · 0.02629 = 0.0081(49) (6)

x1 := x0 + x0 · y0 = 0.3100 + 0.0081 = 0.3181 (7)

d · x1 = 3.1415926 · 0.31810000 = 0.9993406 (8)

y1 := 1.0000000− d · x0 = 0.0006594 (9)

x1 · y1 = 0.31810000 · 0.0006594 = 0.0002097(5500) (10)

x2 := x1 + x1 · y1 = 0.31810000 + 0.0002097 = 0.31830975 (11)

1The asymptotics of the multiplication is set to ∼ N (instead of N log(N)) for the estimates made
here, this gives a realistic picture for large N .

16

Root extraction
Computation of square roots can be done using a similar scheme: first
compute 1√

d
then a final multiply with d gives

√
d. Find a starting approx-

imation x0 ≈ 1√
d

then iterate

xk+1 = xk + xk
(1− d x2

k)

2
(1)

until the desired precision is reached. Convergence is again 2nd order: if
xk = 1√

d
(1 + e) then

xk+1 =
1√
d

(
1− 3

2
e2 − 1

2
e3

)
(2)

Similar considerations as above (with squaring considered as expensive as
multiplication2) give an operation count of 4 multiplications for 1√

d
or 5 for√

d.

Note that this algorithm is considerably better than the one where xk+1 :=
1
2(xk + d

xk
) is used as iteration, because no long divisions are involved.

In hfloat, when the achieved precision is below a certain limit a third order
correction is used to assure maximum precision at the last step:

xk+1 = xk + xk
(1− d x2

k)

2
+ xk

3 (1− d x2
k)

2

8
(3)

2Indeed it costs about 2
3 of a multiplication.

17

Inverse a-th root, a general expression
There is a nice general formula that allows to build iterations with arbitrary
order of convergence for 1/ a

√
d = d−1/a that involve no long division.

One uses the identity

d−1/a = x (1− (1− xa d))−1/a (1)

= x (1− y)−1/a where y := (1− xa d) (2)

Taylor expansion gives

d−1/a = x
∞∑

k=0

(1/a)k̄ yk (3)

where zk̄ := z(z + 1)(z + 2) . . . (z + k − 1) (and z0̄ = 1). Written out:

d−1/a = x
1

a
√

1− y
= x

(
1 +

y

a
+

(1 + a) y2

2 a2 +
(1 + a)(1 + 2a) y3

6 a3 + (4)

+
(1 + a)(1 + 2a)(1 + 3a) y4

24 a4 + · · ·+
∏n−1

k=1 (1 + k a)

n! an
yn + . . .

)

A n-th order iteration for d−1/a is obtained by truncating the above series
after the (n− 1)-th term:

Φn(x) := x
n−1∑
k=0

(1/a)k̄ yk (5)

xk+1 = Φn(xk) (6)

Convergence is n-th order:

Φn(d
−1/a(1 + e)) = d−1/a(1 + O(en)) (7)

18

Iterations for the inversion of a function
An iteration for a zero r (or root, f(r) = 0) of a function f(x) are them-
selves functions Φ(x) that, when ‘used’ like

xk+1 = Φ(xk) (1)

will make xk converge towards the root: x∞ = r. Convergence is subject
to the condition that x0 was chosen not too far away from r. The function
Φ(x) must (and can) be constructed so that it has an attracting fixed point
where f(x) has a zero:

Φ(r) = r (fixed point) (2)

|Φ′(r)| < 1 (attracting) (3)

This type of iteration is a so-called one-point iteration. There
are also multi-point iterations, these are of the form xk+1 =
Φ(xk, xk−1, . . . , xk−j), j ≥ 1. The best known example is the two-point
iteration

xk+1 = Φ(xk, xk−1) = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)
(4)

We are mainly concerned with one-point iterations in what follows.

Order of convergence: linear vs. super-linear.

The number of correct digits grows exponentially (to the base n) at each
step. Iterations of second order (n = 2) are often called quadratic (or
quadratically convergent), those of third order cubic iterations. Fourth,
fifth and sixth order iterations are called quartic, quintic and sextic and so
on.

For n ≥ 2 the function Φ has a super-attracting fixed point at r: Φ′(r) = 0.
For an iteration of order n one has

Φ′(r) = 0, Φ′′(r) = 0, . . . , Φ(n−1)(r) = 0 (5)

There seems to be no standard term for emphasizing the number of deriva-
tives vanishing at the fixed point: super-attracting of order n might be
appropriate.

19

Schröder’s formula
Let n ≥ 2 then the expression

Sn(x) := x +
n−1∑
t=1

(−1)t f(x)t

t!

(
1

f ′(x)
∂

)t−1
1

f ′(x)
(1)

gives a n−th order iteration for a (simple) root r of f . This is, explicitly,

S = x − f

1! f ′
− f 2

2! f ′3
· f ′′ − f 3

3! f ′5
·
(
3f ′′2 − f ′f ′′′

)
(2)

− f 4

4! f ′7
·
(
15f ′′3 − 10f ′f ′′f ′′′ + f ′2f ′′′′

)
− f 5

5! f ′9
·
(
105f ′′4 − 105f ′f ′′2f ′′′ + 10f ′2f ′′′2 + 15f ′2f ′′f ′′′′ − f ′3f ′′′′′

)
− . . .

The third order iteration obtained upon truncation after the third term on
the right hand side, written as

S3 = x− f

f ′

(
1 +

ff ′′

2f ′2

)
(3)

is sometimes referred to as ‘Householder’s method’. Approximating the

second term on the rhs. as f
f ′

(
1− ff ′′

2f ′2

)−1
gives Halley’s formula.

Write

S = x− U1
f

1! f ′
− U2

f 2

2! f ′3
− U3

f 3

3! f ′5
− . . .− Un

fn

n! f ′2n−1 − . . . (4)

then U1 = 1, U2 = f ′′, U3 = 3f ′′2 − f ′f ′′′, and we have the recursion

Un = (2n− 3)f ′′Un−1 − f ′U ′
n−1 (5)

Alternatively write

S = x− Y1

(
f

f ′

)
− Y2

(
f

f ′

)2

− Y3

(
f

f ′

)3

− . . .− Yt

(
f

f ′

)t

− . . .(6)

then Y1 = 1 and

Yt =
1

t

(
2 (t− 1)

f ′′

2f ′
Yt−1 − Y ′

t−1

)
(7)

20

A simple derivation of Schröder’s formula
The starting point is the Taylor series of a function f around x0:

f(x) = f(x0) + f ′(x0) (x− x0) +
1

2
f ′′(x0) (x− x0)

2 + . . . (1)

Now let f(x0) = y0 and r be the zero of f (that is, f(r) = 0). We expand
the inverse g = f−1 around y0:

g(0) = g(y0) + g′(y0) (0− y0) +
1

2
g′′(y0) (0− y0)

2 + . . . (2)

Using x0 = g(y0) and g(0) = r we obtain

r = x0 − g′(y0) f(x0) +
1

2
g′′(y0) f(x0)

2 − 1

6
g′′′(y0) f(x0)

3 + . . . (3)

Remains to express the derivatives of the inverse g in terms of (derivatives
of) f . Set

f ◦ g = id , that is: f(g(x)) = x (4)

and derive the equation (chain rule) to obtain g′(f(x)) f ′(x) = 1, so g′(y) =
1

f ′(x) . Derive f(g(x))− x multiple times to obtain (arguments y of g and x

of f are omitted for readability):

1 = f ′g′ (5a)

0 = g′f ′′ + f ′
2
g′′ (5b)

0 = g′f ′′′ + 3f ′f ′′g′′ + f ′
3
g′′′ (5c)

0 = g′f ′′′′ + 4f ′g′′f ′′′ + 3f ′′
2
g′′ + 6f ′

2
f ′′g′′′ + f ′

4
g′′′′ (5d)

This system of linear equations in the derivatives of g can be solved suc-
cessively for g′, g′′, g′′′, . . . :

g′ =
1

f ′
(6a)

g′′ = − f ′′

f ′3
(6b)

g′′′ =
1

f ′5

(
3f ′′

2 − f ′f ′′′
)

(6c)

Thereby equation 3 can be written as

r = x− 1

f ′
f +

1

2

(
− f ′′

f ′3

)
f 2 − 1

6

(
1

f ′5

(
3f ′′

2 − f ′f ′′′
))

f 3 + . . . (7)

which is Schröder’s iteration.

21

Householder’s formula
For n ≥ 2 the expression

Hn(x) := x + (n− 1)

(
1

f(x)

)(n−2)

(
1

f(x)

)(n−1) (1)

gives a n−th order iteration for a (simple) root r of f .

H2(x) = x− f

f ′
(2a)

H3(x) = x− 2ff ′

2f ′2 − ff ′′
(2b)

H4(x) = x− 3f(ff ′′ − 2f ′2)

6ff ′f ′′ − 6f ′3 − f 2f ′′′
(2c)

H5(x) = x +
4f

(
6f ′3 − 6ff ′f ′′ + f 2f ′′′

)
f 3f ′′′′ − 24f ′4 + 36ff ′2f ′′ − 8f 2f ′f ′′′ − 6f 2f ′′2

(2d)

The second order variant is Newton’s formula, the third order iteration is
called Halley’s formula.

The well-known derivation of Halley’s formula by applying Newton’s for-
mula to f/

√
f ′ can be generalized to produce m-order iterations as follows:

Let F1(x) = f(x) and for m ≥ 2 let

Fm(x) =
Fm−1(x)

F ′
m−1(x)1/m

(3a)

Hm(x) = x− Fm−1(x)

F ′
m−1(x)

(3b)

An alternative recursive formulation:

Q2(x) = 1 (4a)

Qm+1 = f ′(x) Qm(x)− 1

m− 1
f(x) Q′

m(x) (4b)

Hm = x− f(x)
Qm(x)

Qm−1(x)
(4c)

For multiple roots use iterations for f/f ′, for example (Schröder):

S% = x− ff ′

(f ′2 − ff ′′)
−

f 2f ′
(
ff ′f ′′′ − 2ff ′′2 + f ′2f ′′

)
2 (ff ′′ − f ′2)3 − . . . (5)

22

The AGM
The AGM (arithmetic geometric mean) plays a central role in the high
precision computation of logarithms and π.

The AGM(a, b) is defined as the limit of the iteration

ak+1 =
ak + bk

2
(1a)

bk+1 =
√

ak bk (1b)

starting with a0 = a and b0 = b. Both of the values converge quadratically
to a common limit. The related quantity ck (used in many AGM based
computations) is defined as

c2
k = a2

k − b2
k (2)

= (ak−1 − ak)
2 (3)

One further defines

R′(k) := 1− 1

2

∞∑
n=0

2nc2
n (4)

corresponding to AGM(1, k), that is, a0 = 1, b0 = k, c0 =
√

1− k2.

It can be shown that

F

(1
2 ,

1
2

1

∣∣∣ 1− b2

a2

)
=

a

AGM(a, b)
= =

1

AGM(1, b/a)
(5)

F

(1
2 ,

1
2

1

∣∣∣ x

)
=

1

AGM(1,
√

1− x)
(6)

An alternative way for the computation for the AGM iteration is

ck+1 =
ak − bk

2
(7a)

ak+1 =
ak + bk

2
(7b)

bk+1 =
√

a2
k+1 − c2

k+1 (7c)

23

The AGM, Schönhage’s variant
Schönhage gives the most economic variant of the AGM, which, apart from
the square root, only needs one squaring per step:

A0 = a2
0 (1a)

B0 = b2
0 (1b)

t0 = 1− (A0 −B0) (1c)

Sk =
Ak + Bk

4
(1d)

bk =
√

Bk [square root] (1e)

ak+1 =
ak + bk

2
(1f)

Ak+1 = a2
k+1 [squaring] (1g)

=

(√
Ak +

√
Bk

2

)2

=
Ak + Bk

4
+

√
Ak Bk

2
(1h)

Bk+1 = 2 (Ak+1 − Sk) = b2
k+1 (1i)

c2
k+1 = Ak+1 −Bk+1 = a2

k+1 − b2
k+1 (1j)

tk+1 = tk − 2k+1 c2
k+1 (1k)

Starting with a0 = A0 = 1, B0 = 1/2 one has

π ≈ 2 a2
n

tn
(2)

This is a special case of Legendre’s relation (a relation between complete
elliptic integrals) and was discovered (independently) 1976 by Salamin and
Brent. However, the relations has been given 200 years earlier by Gauss.

24

Superlinear iterations for π
The number of full precision multiplications (FPM) are an indication of the
efficiency of the algorithm. The approximate number of FPMs that were
counted with a computation of π to 4 million decimal digits3 is indicated
like this: #FPM=123.4.

AGM as in [hfloat: src/pi/piagm.cc], #FPM=98.4 (#FPM=149.3 for the
quartic variant):

a0 = 1 (1a)

b0 =
1√
2

(1b)

pn =
2 a2

n+1

1−
∑n

k=0 2k c2
k

→ π (1c)

π − pn =
π2 2n+4 e−π 2n+1

AGM 2(a0, b0)
(1d)

Borwein’s quartic (fourth order) iteration, variant r = 4 as in [hfloat:
src/pi/pi4th.cc], #FPM=170.5:

y0 =
√

2− 1 (2a)

a0 = 6− 4
√

2 (2b)

yk+1 =
1− (1− y4

k)
1/4

1 + (1− y4
k)

1/4 → 0 + (2c)

=
(1− y4

k)
−1/4 − 1

(1− y4
k)
−1/4 + 1

(2d)

ak+1 = ak (1 + yk+1)
4 − 22k+3 yk+1 (1 + yk+1 + y2

k+1) → 1

π
(2e)

= ak ((1 + yk+1)
2)2 − 22k+3 yk+1 ((1 + yk+1)

2 − yk+1) (2f)

0 < ak − π−1 ≤ 16 · 4n 2 e−4n 2 π (2g)

Identities 2d and 2f show how to save operations.

3using radix 10, 000 and 1 million LIMBs.

25

file:~/work/hfloat/src/pi/piagm.cc
file:~/work/hfloat/src/pi/pi4th.cc

More iterations for π
Derived AGM iteration (second order) as in [hfloat: src/pi/pideriv.cc], #FPM=276.2:

x0 =
√

2 (1a)

p0 = 2 +
√

2 (1b)

y1 = 21/4 (1c)

xk+1 =
1

2

(
√

xk +
1

√
xk

)
(k ≥ 0) → 1 + (1d)

yk+1 =
yk
√

xk + 1√
xk

yk + 1
(k ≥ 1) → 1 + (1e)

pk+1 = pk
xk + 1

yk + 1
(k ≥ 1) → π + (1f)

pk − π = 10−2k+1

(1g)

Cubic AGM as in [hfloat: src/pi/picubagm.cc], #FPM=182.7:

a0 = 1 (2a)

b0 =

√
3− 1

2
(2b)

an+1 =
an + 2 bn

3
(2c)

bn+1 =
3

√
bn (a2

n + an bn + b2
n)

3
(2d)

pn =
3 a2

n

1−
∑n

k=0 3k (a2
k − a2

k+1)
(2e)

Quintic (5th order) iteration as in [hfloat: src/pi/pi5th.cc], #FPM=353.2:

s0 = 5(
√

5− 2) (3a)

a0 =
1

2
(3b)

sn+1 =
25

sn(z + x/z + 1)2
→ 1 (3c)

where x =
5

sn

− 1 → 4 (3d)

and y = (x− 1)2 + 7 → 16 (3e)

and z =
(x

2

(
y +

√
y2 − 4x3

))1/5

→ 2 (3f)

an+1 = s2
nan − 5n

(
s2

n − 5

2
+

√
sn (s2

n − 2sn + 5)

)
→ 1

π
(3g)

an −
1

π
< 16 · 5n e−π 5n

(3h)

26

file:~/work/hfloat/src/pi/pideriv.cc
file:~/work/hfloat/src/pi/picubagm.cc
file:~/work/hfloat/src/pi/pi5th.cc

High order = fast?
Nonic (9th order) iteration as in [hfloat: src/pi/pi9th.cc], #FPM=273.7:

a0 =
1

3
(1a)

r0 =

√
3− 1

2
(1b)

s0 = (1− r3
0)

1/3 (1c)

t = 1 + 2 rk (1d)

u =
(
9 rk (1 + rk + r2

k)
)1/3

(1e)

v = t2 + t u + u2 (1f)

m =
27 (1 + sk + s2

k)

v
(1g)

ak+1 = m ak + 32 k−1 (1−m) → 1

π
(1h)

sk+1 =
(1− rk)

3

(t + 2 u) v
(1i)

rk+1 = (1− s3
k)

1/3 (1j)

Summary of operation count vs. algorithms:

#FPM - algorithm name in hfloat

78.424 - pi_agm_sch()
98.424 - pi_agm()
99.510 - pi_agm3(fast variant)

108.241 - pi_agm3(slow variant)
149.324 - pi_agm(quartic)
155.265 - pi_agm3(quartic, fast variant)
164.359 - pi_4th_order(r=16 variant)
169.544 - pi_agm3(quartic, slow variant)
170.519 - pi_4th_order(r=4 variant)
182.710 - pi_cubic_agm()
200.261 - pi_3rd_order()
255.699 - pi_2nd_order()
273.763 - pi_9th_order()
276.221 - pi_derived_agm()
353.202 - pi_5th_order()

27

file:~/work/hfloat/src/pi/pi9th.cc

The binary splitting algorithm (for products)
We motivate the binsplit algorithm by giving the analogue for the fast
computation of the factorial. Define fm,n := m·(m+1)·(m+2) · · · (n−1)·n,
then n! = f1,n. We compute n! by recursively using the relation fm,n =
fm,x · fx+1,n where x = b(m + n)/2c:
indent(i)=for(k=1,8*i,print1(" ")); \\ aux: print 8*i spaces

F(m, n, i=0)=
{ /* Factorial, self documenting */

local(x, ret);
indent(i); print("F(", m, ", ", n, ")");
if (m==n, /* then: */

ret = m; \\ == F(m,m)
, /* else: */

x = floor((m+n)/2);
ret = F(m, x, i+1) * F(x+1, n, i+1);

);
indent(i); print("^== ", ret);
return(ret);

}

The function prints the intermediate values occuring in the computation.
The additional parameter i keeps track of the calling depth, used with the
auxiliary function indent().

The intermediate quantities with the computation of 8! =F(1,8) are

F(1, 8)
F(1, 4)

F(1, 2)
F(1, 1)
^== 1
F(2, 2)
^== 2

^== 2
F(3, 4)

F(3, 3)
^== 3
F(4, 4)
^== 4

^== 12
^== 24
F(5, 8)

F(5, 6)
F(5, 5)
^== 5
F(6, 6)
^== 6

^== 30
F(7, 8)

F(7, 7)
^== 7
F(8, 8)
^== 8

^== 56
^== 1680

^== 40320

A fragment like

F(5, 6)
F(5, 5)
^== 5
F(6, 6)
^== 6

^== 30

says “F(5,6) called F(5,5) [which returned 5], then called F(6,6) [which
returned 6]. Then F(5,6) returned 30.” For the computation of other
products modify the line ret=m; as indicated in the code.

28

The binary splitting algorithm (for sums)

For the evaluation of a sum
∑N−1

k=0 ak we use the ratios rk of consecutive
terms:

rk :=
ak

ak−1
(1)

Set a−1 := 1 to avoid a special case for k = 0. One has

N−1∑
k=0

ak =: r0 (1 + r1 (1 + r2 (1 + r3 (1 + . . . (1 + rN−1) . . .)))) (2)

Now define

rm,n := rm (1 + rm+1 (. . . (1 + rn) . . .)) where m < n (3a)

rm,m := rm (3b)

then

rm,n =
1

am−1

n∑
k=m

ak (4)

and especially

r0,n =
n∑

k=0

ak (5)

We have

rm,n = rm + rm · rm+1 + rm · rm+1 · rm+2 + . . . (6a)

· · ·+ rm · · · · · rx + rm · · · · · rx · [rx+1 + · · ·+ rx+1 · · · · · rn]

= rm,x +
x∏

k=m

rk · rx+1,n (6b)

The product telescopes, one gets (for m ≤ x < n)

rm,n = rm,x +
ax

am−1
· rx+1,n (7)

29

The binary splitting algorithm (for sums) [cont.]

R(m, n)=
{ /* Rational binsplit */

local(x, ret);
if (m==n, /* then: */

ret = A(m)/A(m-1);
, /* else: */

x = floor((m+n)/2);
ret = R(m, x) + A(x) / A(m-1) * R(x+1, n);

);
return(ret);

}

The intermediate values with the computation of
∑6

k=0 2−(k+1) are

R(0, 6)
R(0, 3)

R(0, 1)
R(0, 0)
^== 1/2
R(1, 1)
^== 1/2

^== 3/4
R(2, 3)

R(2, 2)
^== 1/2
R(3, 3)
^== 1/2

^== 3/4
^== 15/16
R(4, 6)

R(4, 5)
R(4, 4)
^== 1/2
R(5, 5)
^== 1/2

^== 3/4
R(6, 6)
^== 1/2

^== 7/8
^== 127/128

Reducing the intermediate fractions to lowest terms is necessary with cer-
tain sums. For example, computing arctan(1/10) without reduction shows
the explosive growth of intermediate quantities:

Q(0, 6)
Q(0, 3)

Q(0, 1)
Q(0, 0)
^== [1, 10]
Q(1, 1)
^== [-10, 3000]

^== [29900, 300000]
Q(2, 3)

Q(2, 2)
^== [3000, -500000]
Q(3, 3)
^== [-500000, 70000000]

^== [-104250000000000000, 17500000000000000000]
^== [1569781275000000000000000000, 15750000000000000000000000000]

[--snip--]

30

More details are given in the online draft of my book:

http://www.jjj.de/fxt/#fxtbook

Thanks for your feedback!

Jörg Arndt <arndt@jjj.de>

31

