// output of ./demo/mod/modsincos-demo.cc: // Description: //% Demo of cosine/sine modulo p. arg 1: 257 == m [Modulus] default=257 -------- start MOD_INIT(): m=257 -------- modulus= 257 == 0x101 modulus is cyclic modulus is prime bits(modulus)= 8.0056245 == 9 - 0.99437545 euler_phi(modulus)= 256 == 0x100 == 2^8 maxorder= 256 == 0x100 maxordelem= 3 == 0x3 order(2)= 16 == 2^4 order(2^2)=2^3 order(2^3)=2^4 order(2^4)=2^2 order(2^8)=2^1 max2pow= 8 (max FFT length = 2**8 == 256) root2pow(max2pow)=3 root2pow(-max2pow)=86 sqrt(-1) =: i = 241 -------- end MOD_INIT(). -------- 8: z= 3 = ( 173 + 87) = ( 173 + 107*i) 7: z= 9 = ( 233 + 33) = ( 233 + 14*i) 6: z= 81 = ( 123 + 215) = ( 123 + 99*i) 5: z= 136 = ( 188 + 205) = ( 188 + 196*i) 4: z= 249 = ( 12 + 237) = ( 12 + 194*i) 3: z= 64 = ( 30 + 34) = ( 30 + 30*i) 2: z= 241 = ( 0 + 241) = ( 0 + 1*i) 1: z= 256 = ( 256 + 0) = ( 256 + 0*i) 0: z= 1 = ( 1 + 0) = ( 1 + 0*i) -1: z= 256 = ( 256 + 0) = ( 256 + 0*i) -2: z= 16 = ( 0 + 16) = ( 0 + 256*i) -3: z= 253 = ( 30 + 223) = ( 30 + 227*i) -4: z= 32 = ( 12 + 20) = ( 12 + 63*i) -5: z= 240 = ( 188 + 52) = ( 188 + 61*i) -6: z= 165 = ( 123 + 42) = ( 123 + 158*i) -7: z= 200 = ( 233 + 224) = ( 233 + 243*i) -8: z= 86 = ( 173 + 170) = ( 173 + 150*i)