// output of ./demo/comb/ksubset-lex-demo.cc: // Description: //% Nonempty subsets of the set {0,1,2,...,n-1} with at most k elements. //% Representation as list of parts. //% Subset-lex order. //% Loopless generation. //% See OEIS sequence A117670. //% See Joerg Arndt, Subset-lex: did we miss an order?, (2014) //% http://arxiv.org/abs/1405.6503 arg 1: 6 == n [Size of the set (n>=1)] default=6 arg 2: 3 == k [Max size of subsets (1<=k<=n)] default=3 1: 1..... { 0 } 2: 11.... { 0, 1 } 3: 111... { 0, 1, 2 } 4: 11.1.. { 0, 1, 3 } 5: 11..1. { 0, 1, 4 } 6: 11...1 { 0, 1, 5 } 7: 1.1... { 0, 2 } 8: 1.11.. { 0, 2, 3 } 9: 1.1.1. { 0, 2, 4 } 10: 1.1..1 { 0, 2, 5 } 11: 1..1.. { 0, 3 } 12: 1..11. { 0, 3, 4 } 13: 1..1.1 { 0, 3, 5 } 14: 1...1. { 0, 4 } 15: 1...11 { 0, 4, 5 } 16: 1....1 { 0, 5 } 17: .1.... { 1 } 18: .11... { 1, 2 } 19: .111.. { 1, 2, 3 } 20: .11.1. { 1, 2, 4 } 21: .11..1 { 1, 2, 5 } 22: .1.1.. { 1, 3 } 23: .1.11. { 1, 3, 4 } 24: .1.1.1 { 1, 3, 5 } 25: .1..1. { 1, 4 } 26: .1..11 { 1, 4, 5 } 27: .1...1 { 1, 5 } 28: ..1... { 2 } 29: ..11.. { 2, 3 } 30: ..111. { 2, 3, 4 } 31: ..11.1 { 2, 3, 5 } 32: ..1.1. { 2, 4 } 33: ..1.11 { 2, 4, 5 } 34: ..1..1 { 2, 5 } 35: ...1.. { 3 } 36: ...11. { 3, 4 } 37: ...111 { 3, 4, 5 } 38: ...1.1 { 3, 5 } 39: ....1. { 4 } 40: ....11 { 4, 5 } 41: .....1 { 5 }