// output of ./demo/comb/composition-nz-odd-subset-lex-demo.cc: // Description: //% Compositions of n into positive odd parts, subset-lex order. //% Loopless algorithm. //% Cf. OEIS sequence A000045. //% See Joerg Arndt, Subset-lex: did we miss an order?, (2014) //% http://arxiv.org/abs/1405.6503 arg 1: 10 == n [compositions of n into odd parts] default=10 1: [ 1 9 ] 2: [ 1 1 1 7 ] 3: [ 1 1 1 1 1 5 ] 4: [ 1 1 1 1 1 1 1 3 ] 5: [ 1 1 1 1 1 1 1 1 1 1 ] 6: [ 1 1 1 1 1 1 3 1 ] 7: [ 1 1 1 1 1 3 1 1 ] 8: [ 1 1 1 1 3 3 ] 9: [ 1 1 1 1 3 1 1 1 ] 10: [ 1 1 1 1 5 1 ] 11: [ 1 1 1 3 1 3 ] 12: [ 1 1 1 3 1 1 1 1 ] 13: [ 1 1 1 3 3 1 ] 14: [ 1 1 1 5 1 1 ] 15: [ 1 1 3 5 ] 16: [ 1 1 3 1 1 3 ] 17: [ 1 1 3 1 1 1 1 1 ] 18: [ 1 1 3 1 3 1 ] 19: [ 1 1 3 3 1 1 ] 20: [ 1 1 5 3 ] 21: [ 1 1 5 1 1 1 ] 22: [ 1 1 7 1 ] 23: [ 1 3 1 5 ] 24: [ 1 3 1 1 1 3 ] 25: [ 1 3 1 1 1 1 1 1 ] 26: [ 1 3 1 1 3 1 ] 27: [ 1 3 1 3 1 1 ] 28: [ 1 3 3 3 ] 29: [ 1 3 3 1 1 1 ] 30: [ 1 3 5 1 ] 31: [ 1 5 1 3 ] 32: [ 1 5 1 1 1 1 ] 33: [ 1 5 3 1 ] 34: [ 1 7 1 1 ] 35: [ 3 7 ] 36: [ 3 1 1 5 ] 37: [ 3 1 1 1 1 3 ] 38: [ 3 1 1 1 1 1 1 1 ] 39: [ 3 1 1 1 3 1 ] 40: [ 3 1 1 3 1 1 ] 41: [ 3 1 3 3 ] 42: [ 3 1 3 1 1 1 ] 43: [ 3 1 5 1 ] 44: [ 3 3 1 3 ] 45: [ 3 3 1 1 1 1 ] 46: [ 3 3 3 1 ] 47: [ 3 5 1 1 ] 48: [ 5 5 ] 49: [ 5 1 1 3 ] 50: [ 5 1 1 1 1 1 ] 51: [ 5 1 3 1 ] 52: [ 5 3 1 1 ] 53: [ 7 3 ] 54: [ 7 1 1 1 ] 55: [ 9 1 ] ct=55